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The model of hierarchical complexity (MHC) provides an analytic a priori measurement of the difficulty of 
tasks. As part of the theory of measurement in mathematical psychology, the model of hierarchical complexity 
(Commons and Pekker, 2008) defines a new kind of scale. It is important to note that the orders of hierarchical 
complexity of tasks are postulated to form an ordinal scale. A formal definition of the model of hierarchical 
complexity is presented along with the descriptions of its five axioms that help determine how the model of 
hierarchical complexity orders actions to form a hierarchy. The fourth and the fifth axioms are of particular 
importance in establishing that the orders of hierarchical complexity form an equally spaced ordinal scale. 
Previously, it was shown that Rasch-scaled items followed the same sequence as their orders of hierarchical 
complexity. Here, it is shown that the gaps between the highest Rasch scaled item scores at a lower order and 
the lowest scores at the next higher order exist. We found there was no overlap between the Rasch-scaled item 
scores at one order of complexity, and those of the adjoining orders. There are “gaps” between the stages of 
performance on those items. Second, we tested for equal spacing between the orders of hierarchical complex-
ity. We found that the orders of hierarchical complexity were equally spaced. To deviate significantly from the 
data, the orders had to deviate from linearity by over .25 of an order. This would appear to be an empirical and 
mathematical confirmation for the equally spaced stages of development. 
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The model of hierarchical complexity is a 
framework to represent the intelligence of hu-
mans and animals and provides an alternative 
to the well-known IQ test. In this framework, 
intelligence is measured by the complexity of 
tasks that an individual accomplishes. The model 
of hierarchical complexity has been constructed 
into a measurement system, where order of tasks 
is a scale that measures the complexity of tasks. 
When constructing a scale, it is always important 
to validate and understand the properties of the 
scale. This paper explores whether the orders of 
hierarchical complexity form an ordinal scale. If 
the orders of hierarchical complexity do form an 
ordinal scale, then there should be discernible 
gaps between each order. It also explores whether 
it is a linear and equally spaced scale. There are 
specific reasons for us to be concerned with these 
properties of the scale. 

First of all, whether or not the order of hier-
archical complexity is an ordinal scale is essential 
to the validity of this scale (Krantz, Luce, Suppes, 
and Tversky, 1971). If the order of hierarchical 
complexity is an ordinal scale, it means that the 
order is a valid representation of the complexity 
of items. Past research, which tested participants 
on items with different orders of hierarchical 
complexity, showed that items with higher or-
ders were always more difficult than items with 
lower orders. This paper explores whether there 
are difficulty “gaps” between items of different 
orders of hierarchical complexity (Commons and 
Calnek, 1984). 

Second, whether a scale is equally spaced 
has implications on what inference can be drawn 
from the scale. To have orders of hierarchical 
complexity as an equally spaced scale would 
mean that moving from one order to the next is 
always the same increase in difficulty. In addition, 
an equally spaced scale would indicate that orders 
of hierarchical complexity do not only represent 
the relative position of the difficulty of tasks, but 
also the quantity of the difficulty. 

Introduction to model of hierarchical 
complexity

The model of hierarchical complexity 
(MHC) is a measurement theory which analyzes 

the difficulty of tasks, which is represented by 
the orders of hierarchical complexity. Model of 
hierarchical complexity is not the only theory of 
development based on task complexity. Other 
metrics of task complexity have been proposed 
as well. Horizontal, classical or traditional infor-
mation complexity is one of them. It describes 
the number of “yes-no” questions (Krippendor, 
2009; Shannon and Weaver, 1948). In classical 
information complexity, if a task requires one 
such question, the answer would consist of 1 bit 
of “horizontal” information. Similarly, if a task 
requires two such questions, the answers would 
transmit 2 bits. Each additional 1-bit question 
would add another bit. Horizontal complexity, 
then, is the sum of bits required by tasks that 
require “yes-no” questions. The total number of 
actions is 2n, and the number of bits = n. 

Older metrics of task complexity such as 
the horizontal complexity and others have a 
number of limitations. What is promising about 
the model of hierarchical complexity is that it is 
a newer model that overcomes those limitations. 
The MHC does not confound stages with amount 
of information. Model of hierarchical complex-
ity is based on vertical complexity that involves 
hierarchical information. Hierarchical complexity 
refers to tasks hierarchy that requires the perfor-
mance of lower-order tasks in order to perform 
more complex, higher order tasks. 

Hierarchical complexity has several advan-
tages over horizontal complexity. The advantages 
will be discussed in greater detail below.

Advantages of hierarchical complexity

Hierarchical complexity is better at explain-
ing problem solving difficulty than horizontal 
complexity. Evidence for this claim comes from 
the study done by Commons (2008a). Participants 
were asked to solve four sets of problems from 
mathematics and science domains: beam balance 
(derived from Inhelder and Piaget, 1958; algebra; 
infinity; and laundry problems (derived from 
the pendulum problem of Inhelder and Piaget, 
1958). A stepwise regression performed to test 
whether variables such as number of calcula-
tions required, number size, place in order and 
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hierarchical complexity predicted performance 
on those four tasks. The number of calculations 
required yields the traditional measure of bits. The 
results showed that hierarchical complexity alone 
accounted for far and away the most variability 
in all the four tasks: beam balance (b = 0.977, p 
< 0.001), algebra (b = 0.961, p < 0.001), infinity 
(b = 0.921, p < 0.001) and laundry problem (b = 
0.964, p < 0.001). 

 When other smaller variables, which include 
horizontal complexity, were added to the regres-
sion model along with hierarchical complexity, 
hierarchical complexity wiped out the effect of 
all those variables. Whereas most of those smaller 
variables did not have a significant effect on 
performance, even the ones that had significant 
effect did not have a large effect on performance. 
In the beam balance problem, calculation required 
(traditional bits) had a small but significant effect 
on performance (b = 0.218, p < 0.001). Adding 
the number of calculation required (traditional 
bits) to the model after hierarchical complexity, 
did not account for much more than the amount 
of variation accounted by hierarchical complex-
ity alone, DR2 = 0.025. Similarly, in the algebra 
problem, effect of calculation required and hierar-
chical complexity combined was not much greater 
than the effect of hierarchical complexity alone, 
DR2 = 0.013. The effect of hierarchical complex-
ity (b = 0.943, p < 0.001) was greater than that 
of calculations required (b = 0.117, p < 0.024) 
in this problem as well. For infinity problem, 
the effect of other variables was negligible and 
was not significant. Hierarchical complexity was 
the only variable that predicted performance in 
this problem (b = 0.912, p < 0.001). For laundry 
problem, the amount of variation in performance 
accounted for by hierarchical complexity and 
calculation required combined was not much 
greater than the amount of variation accounted for 
by hierarchical complexity alone, DR2 = 0.010. 
Calculations required only had a small but sig-
nificant effect (b = 0.168, p < 0.001). Data from 
this study showed that hierarchical complexity 
accounted for variation in performance more than 
other horizontal complexities (bits) did. Hence, 
Hierarchical complexity is a better predictor of 
performance than other horizontal complexities.

Second advantage of hierarchical complexity 
is that it is a clear scoring scale and can be used 
to score narratives and vignettes as well. In most 
horizontal complexities there is no clear way of 
applying them to narratives and vignettes.

Third advantage of hierarchical complexity 
is that it captures difficulty in hierarchical na-
ture. Hierarchical nature entails requirement of 
completion of other tasks before the completion 
of one task. This is left out in horizontal complex-
ity. Hierarchical complexity contains horizontal 
complexity. The orders of hierarchical complex-
ity are also related to 2n, where n is the order or 
hierarchical complexity of the task. Horizontal 
complexity has the same formula. However, in 
hierarchical complexity there can be more ac-
tions that do not change order. It also integrates 
hierarchical relations among actions. 

The fourth advantage of hierarchical com-
plexity is that it does well in predicting perfor-
mance in scientific and mathematical domains as 
well as social domains whereas, horizontal com-
plexity cannot be used to predict performances in 
such domains as there is no way of coding number 
of actions involved.

Axioms and Definitions of model of hierarchical 
complexity

In the model of hierarchical complex-
ity, successful completion of a task at a certain 
order of hierarchical complexity indicates the 
person or animal is performing at the stage that 
has the same number and name as that order of 
Complexity. The model has been broadly applied 
to constructing assessment tests in the field of 
stages of social perspective-taking, general logic, 
problem solving, etc. (Bernholt, Parchmann, and 
Commons, 2009; Commons, Goodheart, Pekker, 
Dawson, Draney, and Adams, 2008; Commons, 
Rodriguez, Adams, Goodheart, Gutheil and Cyr, 
2006; Dawson, 2002, 2003; Skoe, (in press)

It is important to understand the concepts 
of actions, events and tasks to understand MHC. 
Actions are defined as behavioral events that 
produce outcomes. Actions may be attributed to 
organisms, social groups, and computers. Ac-
tions may be combined to produce new, more 
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complex actions (Binder, 2000). Events, including 
behavioral events, are perturbations that can be 
detected by at least two independent paths (Com-
mons, 2001). A task can be defined as a set of 
required actions that obtain an objective, though 
the performed actions may or may not complete 
a given task. 

Order of hierarchical complexity character-
izes the underlying difficulty of tasks. The higher 
the order of hierarchical complexity, the more the 
difficulty of the task is. A task analysis allows 
for specification of this order. Past research has 
defined 16 orders of hierarchical complexity, as 
shown in Table 1.

The most irreducible task is at order 0. Order 
0 actions are not planned or controlled. Examples 
of order 0 tasks are computer running a written 
computer program. order 0 consists of traditional 
complexity that computers begin with, bits taking 
values of 0 and 1. All actions to complete the task 
are exact as written by the programmer. There 
is no flexibility. Order 1 actions are flexible and 
adaptive, as compared to order 0 actions. Some 
examples are tropism and bodily movements elic-
ited by simple reflex. In these cases, the organisms 
respond to external stimuli. Order 2 actions are 

more complex. They are made out of coordinating 
order 1 actions. One example is a baby reaching 
out to breast when it is hungry. The tasks of order 
3 are made out of actions of the order 2, and so 
on. The repeating process of an order of actions 
defined in terms of lower order actions produces 
the numerical relation structure, and stratifies 
orders of hierarchical complexity.

Higher order task action is: a) defined in 
terms of tasks at the next lower order of hier-
archical complexity task action; b) defined as 
the higher order task action that organizes two 
or more less complex actions; that is, the more 
complex action specifies the way in which the 
less complex actions combine; c) defined as the 
lower order task actions have to be carried out 
non - arbitrarily. Once these conditions have been 
met, we say the higher order task coordinates the 
tasks of the next lower order. 

For example, simple calculations of addi-
tion and multiplication are primary order 7 tasks 
(Commons, Miller, Goodheart, and Danaher-
Gilpin, 2005). Multiplication is not hierarchically 
more complex than addition, because it does 
not fulfill all the conditions mentioned above. 
It fulfills condition (a): repetitive addition de-
fines multiplication. However, it does not fulfill 
conditions (b) or (c) because the organization of 
addition is not non-arbitrary. It could occur in 
any order. In contrast, the task of calculating a 
× (b + c) is at the concrete order 8. It fulfills all 
three conditions listed above. First, calculating 
a × (b + c) is defined of both multiplication and 
addition. Second, it organizes the multiplication 
and addition in a non-arbitrary way. One has to 
do (b + c) before doing a × (b + c). Or one has 
to do (a × b) + (a × c) in the order specified by 
mathematical rules.

Figure 1 illustrates the hierarchical struc-
ture of tasks as described by the model. The 
measurement system of the model of hierarchi-
cal complexity is composed of axioms. Axioms 
are rules that are followed to determine how the 
model of hierarchical complexity orders actions 
to form a hierarchy. There are five axioms: well 
ordered, transitive, chain rule, coordination rule 
and equal spacing (optional). The concatenation 

Table 1
16 Stages and orders of hierarchical complexity
	 Order	 Name of Complexity

	 0	 Calculatory
	 1	 Sensory and Motor
	 2	 Circular Sensory-Motor
	 3	 Sensory-Motor
	 4	 Nominal
	 5	 Sentential
	 6	 Preoperational
	 7	 Primary
	 8	 Concrete
	 9	 Abstract
	 10	 Formal
	 11	 Systematic
	 12	 Metasystematic
	 13	 Paradigmatic
	 14	 Crossparadigmatic
	 15	 Meta-Crossparadigmatic
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operator, “○”, represents the way in which actions 
are connected. A system of entities, as a set of 
actions, is represented by letters such as a. The 
comparison operator, “ ≻” is used to arrange ac-
tions in a hierarchy. In the case of real numbers, 
the comparison operator is “>” and the concatena-
tion operator is “+”. If a is an n order action the 
assignment function j assigns the number n to 
a which is denoted by j(a) = n. The assignment 
function, j(a), denotes the order of hierarchical 
complexity (OHC). 

Axiom 1, Well ordered: If a ≻ b, then j (a) 
> j (b)

Axiom 1 means that when actions are con-
verted to numbers by applying the mathematical 
assignment function j, action a remains more 
hierarchically complex than action b. 

Axiom 2, Transitivity: If a ≻ b and b ≻ c 
then a ≻ c

Axiom 2 means that if action a is more com-
plex than action b, and action b is more complex 
than action c, then action a is more complex than 
action c. 

Axiom 3, Chain rule: j(a ○ b) = max (j (a), 
j (b)) if j (a ○ b) = j (b ○ a)

Axiom 3 states that when actions a and b 
are chained together in some order, and the order 
in which they are executed is not influential to 
accomplishing a task, the order of hierarchical 
complexity of (a ○ b) equals that of the highest 
subaction. Chaining together the two actions does 
not produce an action that is hierarchically more 
complex than either of the subactions. 

Axiom 4, Coordination rule: j(a ○ b) = 
max (j(a), j(b)) + 1 if j(b) = j(a) and j(a ○ b) 
≠ j(b ○ a). 

In this case, the concatenation operator “○” 
coordinates the organization of the ordering of 
action rules in a non-arbitrary way. In addition, 
action a and action b has to be on the same stage. 
When these two conditions are satisfied, the 
coordination of action a and action b, which is 
represented by (a ○ b), is one order more complex 
than either of the subactions. j(b) = j(a) is neces-
sary because, in order for the coordinated action 
to move up a stage, the actions have to be on the 
same stage. The coordination of two actions on 
different stages does not produce an action that 
is one stage higher. 

Axiom 5, Optional, Equal spacing (optional): 
OHC (n + 1) - OHC(n) = 1

where, OHC(n) = j(a), then for every order 
n, (n)(OHC(n + 1) – OHC(n)) = 1

Axiom 5 states that the a priori difficulty of 
a task action changes by 1 for each change in the 
order of hierarchical complexity, irrespective of 
what adjacent orders of Hierarchical Complexities 
one is comparing. 

Axiom 4 and axiom 5 are of particular 
significance in establishing that there are sig-
nificant gaps between orders and that the orders 
are equally spaced. The above five axioms allow 
more specific definitions about the model of 
hierarchical complexity which help establish the 
above argument. 

12

Figure 1. order of hierarchical complexityFigure 1. Order of hierarchical complexity
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Definition 1: There exists simple actions, x 
with j (x) = 1. This is the lowest order action. 

Definition 2: If there is no action, then the 
null action is at order 0. 

Definition 3: A higher order hierarchically 
complex action is defined in terms of two or more 
next lower order actions, A = j (B ○ C), where j 
(B) and j (C) are both less hierarchically complex 
than j (A) if j (B ○ C) is a coordination. This 
creates the hierarchy:

A = {a, b} a, b are lower order of hierarchi-
cally complexity than A and together composes 
set A

A ≠ {A, ...}, According to the definition of a 
set, a set cannot contain itself. This can be seen 
from Russell’s Paradox. That paradox points out 
the contradiction in the definition of a set. If a 
set is not a member of itself, it would qualify as 
a member of itself by the same definition (See 
Russell’s paradox (1902; 1980). 

This definition follows definition 1 and 
Axiom 4. 

Next, the differences between chain rules and 
coordination rules are explained in more depth. 

Definition 4: Given a permutation of concat-
enated actions = (i1,i2,¼,in) of the natural numbers 
1, 2,¼, n, the execution of action A is simply Ai1 
○ Ai2,¼,○Ain. 

The rule, R, is a chain rule if the outcome of 
the action is the same for all n! permutations of 
the numbers 1, 2,¼, n. The outcome of the order 
of actions, Ai1○Ai2 ○¼○ Ain is the same for all 
permutations (i1,i2,¼,in) of 1, 2,¼, n. 

Rule, R, is a coordination rule if there exists 
at least one permutation of actions R = (j1, j2,¼, 
jn) of the numbers 1, 2,¼, n so that the execution 
of the actions Ai i.e., Aj1○ Aj2, ¼,Ajn, is not the 
same as the outcome of the action A. Hence, the 
outcome of Ai is given by at least one, but not 
all, permutations of the Ai. This extends similarly 
to the cases where A consists of infinitely many 
actions.

Note that by Axiom 4, a coordination action 
A = ({A1,¼}, R) necessarily coordinates subac-
tions of subtasks of equal orders of hierarchical 

complexity (i.e., j(A1) = j(A2) = ¼). Thus the 
order of hierarchical complexity of A is one higher 
than the order of hierarchical complexity of all its 
subactions. Therefore, A1 may be replaced by any 
subaction of A and still obtain the same result. As 
a consequence of these axioms, we see that if we 
let A denote the collection of all actions in a given 
system, then the order of hierarchical complexity 
is a function h: A → N, where N = {0, 1,¼} is 
the set of natural numbers (and zero) under the 
usual ordering.

The following properties emerge from the 
axioms and the definitions:
1.	  Discreteness: The order of hierarchical com-

plexity of any action is a nonnegative integer. 
In particular, there are gaps between orders.

2.	  Existence: If there exists an action of order 
n and an action of order n + 2, then there 
necessarily exists an action of order n + 1.

3.	  Comparison: For any two actions A and B, 
exactly one of the following holds: j(A) > 
j(B), j(A) = j(B), j(A) < j(B). That is, the 
orders of hierarchical complexity of any two 
actions can be compared.

4.	  Non-reducibility: A higher order action can-
not be equal to any lower order actions. This 
property arises from the coordination rule, 
which claims that the coordination of two or 
more actions at the same order produces an 
action that is one order above. 
Concepts from set theory are applied here to 

clarify why two order tasks can be non-arbitrarily 
ordered only at the next order. The higher order 
corresponds to a set A. Assume A = {a, b}. The 
lower order relations in the system correspond to 
the elements of lower order elements of the set, 
actions a and b. This creates the hierarchy because 
the set A is not the same as its elements a and b. 
The elements are at a lower order than the set. 
Therefore, the order of the set is not equal to the 
order of its elements, and n + 1 ≠ n. Hence, the 
orders cannot be collapsed. 

For example, consider an empty set Ø. Rus-
sell argued that an empty set cannot be a member 
of itself (Godehard, 2004). An empty set Ø = { } 
has no member. Having no members mean that 
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there is nothing in it, or the member is “nothing”. 
Because Ø is a set, it is “something”. Something 
cannot equal to nothing. Therefore, an empty set 
Ø cannot equal to its member. Likewise, a higher 
order action cannot equal to any lower order ac-
tion from which it is made.

A way to avoid this paradox is Russell’s type 
theory. First a hierarchy of types is created, and 
then each mathematical (and possibly other) en-
tity is assigned to a type. Objects of a given type 
are built exclusively from objects of preceding 
types (those lower in the hierarchy) to preventing 
loops. The same is true for orders of hierarchical 
complexity

This is consistent with Inhelder and Piaget 
and the model of hierarchical complexity. These 
theories state that each next order actions coordi-
nates the actions performed at the preceding order 
of complexity. To apply the premise successfully, 
the actions of each stage must be unambiguously 
specified. The stage generator concept success-
fully eliminates ambiguity about what makes a 
stage by precise specification. Given a collection 
of actions A and a participant S performing A, 
the stage of performance of S on A is the highest 
order of the actions in A completed successfully.

Stage(S, A) = max {h (A) | A 0 A and A com-
pleted successfully by S}. 

Empirical Study

In past research, whether orders of hier-
archical complexity of items truly account for 
difficulty of tasks has been empirically tested. In 
several studies (Commons, Goodheart et al. 2008; 
Bernholt, 2009), items were constructed using the 
Model of Hierarchical Complexities theory. Items 
at order (n +1) coordinated items at order n, and 
the organization was non-arbitrary. Participants 
were asked to complete these item tasks. Answers 
were marked right or wrong. Then the data were 
analyzed using Rasch analysis (Bradley and Terry, 
1952; Luce, 1959, Rasch, 1980).

In Rasch analysis (1980), probability of 
items being answered correctly is modeled as 
a function of item difficulty and person ability. 
The person ability, or person stage of perfor-

mance, stands for how well the person performs 
at the set of tasks. The items difficulty, or Rasch 
scaled item difficulty, is how difficult items were 
empirically. Both stages of performance scales 
are based solely on whether or not a given order 
of hierarchical complexity is correctly carried 
out. The order of hierarchical complexity is the 
theoretical difficulty of the items. It has been 
found that item order of hierarchical complexity 
accounted for over 90% variance of the Rasch 
scaled item difficulty (Commons, Goodheart et 
al. 2008; Bernholt, 2009). 

Argument for gaps between orders 

The result from past empirical research 
showed that the orders of hierarchical complex-
ity of items predicted the relative difficulty of 
the items in the survey (Commons, Goodheart, 
Pekker, Dawson, Draney, and Adams, 2008). This 
is evidence that order of hierarchical complexity 
is an ordinal scale. 

In addition, Rasch variable map of item dif-
ficulty showed “gaps” between items at each order 
of hierarchical complexity—items at each order 
clustered together. Rasch scaled item difficulty 
of items “jumps” from the highest items of order 
n to the lowest item of order (n + 1), instead of 
increasing in a continuous motion. 

Whether “gaps” really exist is of interest to 
the authors, because it may provide evidence that 
there are qualitative changes between different 
orders of hierarchical complexity. In the model 
of hierarchical complexity, tasks at each order of 
hierarchical complexity have a distinct order of 
difficulty. From each order of hierarchical com-
plexity to the next, the demand of solving the task 
jumps in an ordinal manner. Therefore, items at 
the same order should be similar, or theoretically 
have the same difficulty. In real data, the items 
at each order always have a range due to noise. 
However, the authors expect that as sample size 
increase, Rasch scaled item difficulty of items at 
the same order will converge. 

This paper will analyze the data from an 
instrument and analyze whether “gaps” exists 
between orders and if there is equal spacing 
between orders. 
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Arguments for Linearity and Equal Spacing

The second question is whether the distance 
of item difficulty between each order of hierarchi-
cal complexity is the same, or whether the scale 
is a linear scale. As far as the authors know, there 
are no equally spaced ordinal scales. As part of the 
theory of measurement in mathematical psychol-
ogy, the model of hierarchical complexity might 
define this new kind of scale.

The order of hierarchical complexity is not 
an interval scale, because orders cannot be added 
(Luce and Tukey, 1964). If one adds a task at order 
7 and a task at order 8, it does not produce a new 
task at order 15. However, it might be a linear, 
equally spaced scale. 

 If the order of hierarchical complexity is lin-
ear and equally spaced scale, then it must satisfy 
this relationship: a * f (n) = f (a * n), where a is a 
constant, n is the order hierarchical complexity of 
an item, and f is a function that calculates the dif-
ficulty of the item. In addition, every jump of one 
order represents the same increase in difficulty. 

Three Arguments to Support Equal Spacing

There will be three arguments given to sup-
port the likelihood of equal spacing: Fractal nature 
of the transition steps in performance; pattern 
recognition of two forms, stacked neural networks 
and same Diffusion process in recognition task at 
different stages.

A first form of support for equal spacings is 
found from the fractal nature of stage transition. 
Stage transition may be directly tied to the no-
tion of order of hierarchical complexity. The next 
order behavior is defined in terms of two or more 
the next lower order behaviors, and the higher 
order task actions have to organize the lower 
order ones in a non-arbitrary way (Commons, 
Gane-McCalla, Barker and Li, in press). So stage 
transition is complete when the next order task 
actions have successfully addressed the next order 
tasks. What underlies stage transition is similar to 
what underlies stage itself in one major respect. In 
both cases, there are task that must be completed 
correctly. In stages of performance, the tasks 
successfully completed have a particular order 

of hierarchical complexity. In the performance 
version of transition, the performance is at a given 
ordered step along the way in transition. Both the 
order of hierarchical complexity and step orders 
are ordinals. The performance should reflect 
those orders. If going from one stage to the next, 
always follows the same process, then the stages 
are fractal in nature. This is because going from 
successfully addressing one order’s tasks and 
then doing the next follows the same dynamical 
rules (Ross, 2008). 

Just as the orders of hierarchical complexity 
are an ordinal scale, so also are the transition steps 
that individually comprise the transition sequence. 
Table 2 illustrates transition steps between stages. 
One way to visualize the relation of the transition 
step ordinal scale to the orders of hierarchical 
complexity is as follows. The orders of increas-
ing hierarchical complexity are an ordinal scale 
(i.e., 0, 1, 2, 3, 4,…,15). The transition steps that 
lead from one order to another fall on another 
ordinal scale, which runs from 1 through 6. The 
ordinal nature means these are not like degrees of 
temperature that are on an equally spaced scale. 
Ordinal scales are simple counts of occurrences; 
in this case, task orders.

One major implication of this universal, self-
similar pattern that shows up at all scales of tasks 
of any kind is, by definition, is that the stages 
described by the model of hierarchical complex-
ity are fractal, as are the transition steps. That is, 
the same pattern repeats within each transition 
sequence and in more complex transition behav-
iors, fractals of the model’s stage sequences also 
appear within transition sequences (Ross, 2008). 
“Formally, a fractal is an infinite, self-propagating 
pattern that repeats at every level of resolution” 
(Vicciardo, 2010). A mathematical fractal is 
based on an equation that undergoes iteration, 
a form of feedback based on recursion (Briggs, 
1992). In the case of hierarchical complexity, 
a higher order action always results from the 
non-arbitrary organization of two or more, lower 
order actions. And, transition always follows the 
same pattern of rejection of previous action, fol-
lowed by alternation of behaviors, followed by 
arbitrary behavioral combinations, and finally, 
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by the non-arbitrary organization of behavior at 
the next higher order of complexity. Table 1 is 
an abbreviated description of the eight ordinally 
scaled transition steps. Because these steps oc-
cur between each stage, the spacing of the stages 
might be equal. Therefore, the assumption is that 
each coordination is of equal difficulty. 

The way the ordinal scale of hierarchical 
complexity is generated in Table 1.

Let n = the order of hierarchical complexity
If an action at order n + 2 is one order higher 

than an action of order n + 1, and an action at 
order n + 1 is one order higher than an action at 
order n, then these actions of orders of hierarchi-
cal complexity can be generalized for all orders 
by using mathematical induction. Note that n + 
2, n + 1, n is an ordinal sequence. If there were 
additional orders in between any two orders, n 
+ 1 and n, they would have to meet the axioms, 
especially the three main ones, that higher order 

of complexity actions are defined in terms of the 
next lower order, organize them, and in a non-
arbitrary way. Because that has been tested for 
over 50 sequences, and the commonalities of the 
characteristics of the task actions at those orders 
have been abstracted, we are very confident that 
there are no other orders except above 15.

A Second and Third Form of Support for Equal 
Spacing Come from Pattern Recognition

Stage change occurs when the actions of 
combining of the lower order entities into the 
higher order ones occurs successfully. When this 
is achieved, stage transition has been completed. 
We assert that all stage change requires pattern 
recognition. The pattern to be recognized is the 
ordering of lower order actions that works in the 
new stage. However, not all pattern recognition 
is stage change, but all pattern recognition oc-
curs at some stages. Some examples that pattern 

Table 2
Transition Steps Between Stages
		  Step	 Substep 
	 Step	 Name	 Name	 Relations	 Dialectical Form

	 1	 A		  Extinction of thesis 	 Previous stage action does not solve 
				    from previous stage	 many tasks. (Deconstruction begins)  
				    begins 	 Extinction Process

	 2	 B		  Antithesis: Negation 	 Negation or complementation, Inversion, or 
				    or complementation	 alternate thesis

	 3	 A or B		  Relativism: Alternation 	 Alternation of thesis and antithesis. There is 
				    of thesis and antithesis	 no coordination of them

	 4	 A and B		  Smash: Synthesis 	 Unordered synthesis of components from A 
				    begin	 and B

			   Smash 1	 Random Hits, False 	 Synthesis of components from A and B 
				    alarms and Misses 	 in a non-random order 
				    and Correct Rejections	

			   Smash 2	 More Hits, lower Misses,	 Incorporates subsets producing hits at Stage n.  
				    excess False Alarms 	 Basis for exclusion not sharp.  
					     (Overgeneralization.)

			   Smash3 	 Correct Rejections 	 Incorporates subsets producing correct 
				    increase , Excess	 rejections. Basis for inclusion not sharp. 
				    misses, Lower Hits 	 (Undergeneralization) 
				    and False Alarms	  

	 5	 A with B		  Synthesis and new 	 Temporary equilibrium (synthesis and new 
				    thesis: New temporary 	 thesis) 
				    equilibrium	
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recognition is the same independent of stage are 
presented next. If the same mechanism is used 
over and over and the parameters in the models 
are roughly constant, it supports the notion that 
the stages will be equally spaced.

A second form of support for equal spacings 
is found in the neural network model for hierarchi-
cal complexity (Commons, 2008b). It is another 
model for pattern recognition. This model also 
shows that going from one stage to another fol-
lows the same process. The stages are modeled 
by stacking neural networks into layers. Neural 
networks at each stage are the same. Each network 
recognizes a pattern and stacks of neural network 
follow stages (Commons, 2008b). It can be es-
tablished from the stacked neural network model 
that same steps or processes occur between each 
stage which indicates that the spacing between 
the stages might be equal.

A third form of equal spacing follows from 
evidence that the same process is used for stage 
change no matter what the stage. Further substan-
tiation of the notion that transition between stages 
follows the same dynamic processes between ev-
ery stage can be attained from Ratcliff, Thapar and 
McKoon’s (2006) study. They applied a diffusion 
model in analyzing performance of participants of 
three different age groups on four different tasks. 
Ratcliff’s (1978) diffusion model was first used 
as a theory of memory retrieval. He later used the 
model to analyze individuals’ cognitive processes 
while making simple two-choice decision tasks. 
We suggest that the Ratcliff et al. (2006) study 
was about general pattern recognition. All four 
tasks used in the study required the participants 
to recognize a certain pattern before coming to 
a conclusion about the answer. The tasks were 
signal detection, letter discrimination brightness 
discrimination and memory recognition (see 
Appendix A for description of each task). Signal 
detection required recognition of numerosity, let-
ter discrimination required recognition of letters, 
brightness discrimination required recognition of 
light intensity and memory recognition required 
recognition of words. It can be inferred that the 
reason Ratcliff et al. found that there were cor-
relations across tasks in component processes 

for individual subjects was that this common 
underlying mechanism of pattern recognition is 
required in all the tasks. 

At the same time, in coding these tasks in 
terms of hierarchical complexity, we have found 
that they differ. The tasks were scored and agreed 
upon by four trained scorers using hierarchical 
complexity Scoring System (HCSS) (Commons, 
Miller, Goodheart, and Danaher-Gilpin, 2005). 
The order of each task defers depending on 
whether the tests are administered on humans or 
animals. Signal detection requires participants 
to estimate as they are asked to decide whether 
the number of asterisks flashed on the screen is 
large or small. For animals, this is a minimum 
perceptual task which can be achieved at stage 2. 
However, since the participants were human in the 
study done by Ratcliff et al., the task was beyond 
a perceptual one as humans have the concept of 
what is large and small and they use the concept 
while making a decision about the number of 
asterisks. Those who successfully solve this 
task are performing at Stage 3. Similarly, letter 
discrimination is an order 3 task for animals 
such as pigeons. This task requires matching of 
letters. Letters are arbitrary symbols for animals 
which have no meaning. However, humans who 
successfully solve this task function at stage 6 
because letters are not arbitrary symbols for them 
and processing letters requires one to function at a 
higher stage. Brightness discrimination is another 
perceptual task. Merely seeing the difference in 
brightness requires the participant to be at stage 
1, choosing whether the stimulus is bright or dark 
requires one to function at stage 2, but saying 
whether the stimulus is dark or bright requires 
one to be at stage 4. Memory recognition is an 
order 8 task since participants have to discrimi-
nate words. Their familiarity with the words, in 
particular knowing about one word with respect 
to others, would affect their responses. It was not 
merely a matching task. Although these tasks dif-
fer in stages, they all require pattern recognition 
which works the same way at every stage. Only 
the number of layers changes at each stage. The 
highest stage always requires all the lower stage 
processing. The fact that the tasks differ in their 
orders of hierarchical complexity but require the 
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same underlying process of pattern recognition 
suggests that, first of all, the mechanism of mov-
ing from one stage to the next is always engaging 
in pattern recognition. If so, this would suggest 
that such stage transitions are equally difficult and 
that the stages and the orders are equally spaced. 

Current Paper

In the current paper, we explore and pres-
ent evidence from empirical data to support 
two hypotheses. First, we hypothesize that there 
are “gaps” between items on different stages of 
performance. 

We will test this hypothesis by analyzing 
the gaps, which are difference scores of Lowest 
Rasch Item Difficulty score of the next higher 
order of hierarchical complexity items and the 
Highest Rasch scaled item difficulty score of 
items from the next lower order of hierarchical 
complexity items. The null hypothesis is that 
the average of size of gaps between items from 
contiguous orders of hierarchical complexity are 
equal to the average difference between Rasch 
scaled item difficulty of the more difficult item 
and that of the next less difficult item. We expect 
that the null hypothesis will be rejected. 

Second, we hypothesize that there is equal 
spacing and linearity between the orders of hi-
erarchical complexity. We test this hypothesis 
by running several different analyses such as 
simple linear regression, lack of fit test, t-tests 
and perturbations.

Method

Participants

There were 113 participants. Participants 
were recruited from online Listservs. All partici-
pation was voluntary and no compensation was 
given. Of these participants 47 (41.6%) were men 
and 66 (58.4%) were women. Self-reported ages 
ranged from 18 to 70 (M = 34.67, (SD = 13.76). 
Five participants’ data of age had apparent mis-
takes and their data was not taken into account 
in the calculation of age demographics. Educa-
tion varied from high school to graduate degree 
(35 high school graduates, 57 Bachelor’s degree 

holders, 8 master’s level degree holders and 13 
doctoral level degree holders. M = Bachelor’s 
degree).

Instruments

This study used the laundry instrument that 
was based on the Inhelder and Piaget’s (1958) 
pendulum task. The laundry instrument asked par-
ticipants whether or not a piece of laundry would 
be clean after varying treatment. Participants 
were required to view a table depicting what had 
already happened (informational episodes) and 
then make predictions about what would happen 
in a new episode. The instrument was in English 
and it was given in the United States. Each in-
strument that the participants received included 
tasks at the primary, concrete, abstract, formal, 
and systematic order in the model of hierarchical 
complexity.

Tasks. The history of the different variants 
arising from the pendulum task ( Inhelder and 
Piaget, 1958) begins with the plant problem 
created by Kuhn and Brannock (1977) (also see 
Kuhn, 1974; Kuhn, and Angelev, 1976). Kuhn 
and Brannock used the plant problem because 
they felt it offered greater external and ecological 
validity than Inhelder and Piaget’s pendulum task. 
To perform at the formal stage, the pendulum task 
required participants to perform an experiment by 
manipulating a single variable while holding all 
other variables constant. They had to figure out 
which variable controlled the rate that a pendulum 
weight would cross the low point. The content 
was is the physics domain, with which many 
participants were unfamiliar. The plant problem 
overcame this by offering various observations of 
what made a plant healthy or sick, which differed 
in several areas and required participants to make 
inferences based on numerous observations. Kuhn 
and Brannock (1977) felt that their plant problem 
more closely reflected “natural experiments” 
where the individual does not have to solve a 
controlled laboratory type experiment like the 
pendulum task.

Although the general direction of the changes 
was positive in terms of bringing greater eco-
logical validity to studies of isolation of variables 
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problems, the new instrument had certain issues 
such as the possibility for a participant to find mul-
tiple simple answers and a lack of consistency of 
the number of variables between episodes. Also, 
the participants were interviewed after which their 
replies were scored. As was the Piagetian (Inhel-
der and Piaget, 1958) tradition, single tasks were 
used to measure multiple stages for performance. 
Without a true independent variable, this made it 
difficult to see what contributed to the differences 
in performance. One had to make inferences 
from often incomplete interviews insufficiently 
probed. This step added a layer of confusion that 
would not exist if the outcome alone was scored. 
For this reason the original plant problem was 
altered by Commons, Miller, and Kuhn (1982). 
The new instrument had two positive and two 
negative possible causes in each episode. There 
were three episodes positive outcomes and three 
with negative ones. This created six information 
episodes that had four variables and ten test epi-
sodes. The combinations of three of the variables 
that were the compliment of the one that was 
obviously causal were also causal. However, for 
any finite number of trials, the combination of the 
complementary variables of the causal variable 
would also be causal. If the plant food were causal 
ingredient, then the combination of the leaf lotion, 
small or large pot, lot or a little water would also 
be causal. Almost no participants detected this 
combination.

For the current study, the tasks’ properties 
that were either truly independent variables or 
quasi-independent variables were separated from 
performance on those tasks. This allowed us to 
see that the difficulty of the items as represented 
by their order of hierarchical complexity was the 
most predictive task variable. The results from 
these studies support the model of hierarchical 
complexity’s effectiveness in predicting stage of 
performance on tasks of differing hierarchical 
complexity.

There was one additional problem with these 
earlier versions of the isolation of variables prob-
lems. Only one version of the problem was ever 
administered. It had different number of variables 
per episode and one outcome per episode that was 

supposed to be correct. Explanations of choices 
were scored as to stage from the inferred task that 
the participants were successfully addressing. 
Different participants were taking into account 
different amounts of information given at dif-
ferent stages (Miller, personal communication, 
June 20, 2010). Some appeared to not attend to or 
refer too much, if any, of the given information. 
Others focused on only one or two variables, not 
checking each variable systematically. Of course, 
some properly attended to the variables eliminat-
ing the non-causal ones (Formal Stage 10). A few 
saw more complex relationships, including the 
possible interactions between instances in their 
responses (Concrete Stage 8). Clearly, those who 
did not refer too much of the information, or 
only considered one variable were scored lower 
than those who considered all four. In placing 
participants into the different “stage” categories 
there was always uncertainty as to whether that 
participant really belonged there or whether their 
response might be due to other factors that were 
not controlled. As investigators, we began to 
consider what might happen if we created differ-
ent versions of the isolation of variables problem, 
some of which were simpler and some of which 
were more complex. 

Instrument description. This section de-
scribes the format of the tasks. A task is what 
the participant was required to complete in order 
to answer a problem correctly. Participants pre-
sented a simple deduction, A leads to B, and A 
is presented, they were asked to predict whether 
B or not B was correct. Although the content, 
country, and language of each instrument varied, 
the tasks requiring successful completion in order 
to answer the problem correctly were virtually 
the same across instruments. The following de-
scriptions of the tasks for each order are taken 
from the Decision Making Instrument. From the 
Rasch analysis of the combined data, the item 
reliability was 1.00. The following descriptions 
of the tasks for each order were taken from the 
laundry instrument. 

Primary. At the primary order 7, there were 
two informational episodes each showing one 
ingredient and an outcome. One outcome showed 
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a case where the stain was removed and the other 
showed that it was not. There was just a single 
ingredient variable in both cases. The prediction 
episode repeated the one and only ingredient in 
the informational episode and asked the partici-
pant to predict the outcome, which was described 
verbatim in the informational episode. The partici-
pant was tasked with recognizing that the answer 
was directly given in the informational episodes 
by each ingredient – outcome pair. In all the or-
ders, the predictions were based on bidirectional 
associations of ingredients and outcomes so that 
not only was “if A then B” was true but also “A 
if and only if B” was true.

Concrete. At the concrete order 8, two or 
more instances of the primary order actions were 
combined. At the primary order, a single ingredi-
ent was the predictor of the correct outcome. At 
the concrete order, there were multiple ingredients 
as possible predictors, but only one that was a 
correct predictor of the correct outcome. The pre-
diction episode repeated the multiple ingredients 
from the informational episode and the participant 
had to choose that the stain would behave the way 
it did in the informational episode. This required 
them to consider not just one ingredient – out-
come pair but two or more ingredient - outcome 
pairs. The participants were given the task of 
recognizing that the answer was directly given 
in the informational episodes. Two versions of 
the concrete order 8 tasks were used. The laundry 
instrument had four informational episodes that 
showed whether or not four ingredients removed a 
stain. Subsequent versions of the instruments use 
four informational episodes that show whether 
or not two ingredients together produce a clean 
or dirty cloth. 

Abstract. At the abstract order 9, there were 
three informational episodes that showed whether 
or not two ingredients removed a stain. The ab-
stract order was the first order that required par-
ticipants to isolate a variable in order to determine 
the outcome of the prediction episode.  But there 
were only two variables given, so the task required 
a minimal amount of isolation of variables.  The 
participant was required to examine one variable 
at a time in order to find a consistent outcome. For 
example, in a particular problem, type of bleach 

determined the effectiveness of the combination.  
In another problem, water temperature was predictive. 
The process combined two concrete order tasks, 
by first having to find which variable did not pre-
dict the outcome and then finding which variable 
predicted the outcome. Looking at one variable 
at a time was the organizing action.

Formal. At the formal order 10, there were 
six informational episodes with four variables 
within each episode that showed whether or not 
one of the four ingredients removed a stain. In the 
prediction episodes, participants had to isolate a 
single ingredient (variable) whose value predicted 
whether that particular ingredient would clean 
clothing irrespective of the values of the other 
ingredients. Many of the combinations presented 
in the prediction episodes did match combina-
tions presented in the informational episodes. 
The abstract order of isolation of variables action 
therefore had to be applied in a systematic way 
to each of the variable outcome instances across 
episodes. It is the antecedent-consequent testing 
of the variables that orders the abstract order 9 of 
testing of single variables. Therefore proficiency 
at-testing one variable at a time and identifying 
univariate predictive relations must be acquired 
in order to solve the more complex problems. 

Systematic. At the systematic order 11, the 
informational episodes stated, which are combina-
tions of two of four types of ingredients produced 
clean or dirty clothing. In the prediction episodes, 
participants identified the two variables whose 
values predicted whether or not particular com-
binations of ingredients would clean clothing. For 
example, in a particular problem, type of bleach 
and water temperature determined the effective-
ness of the combination. In another problem, type 
of detergent OR type of booster were predictive. 
This conception of causality was multivariate: If 
(A and B), then C, or if (A or B), then C. Either 
type of rule could govern causal relations at the 
systematic order. Systematic-order rules organize 
and coordinate formal-order rules. The systematic 
order 11 action of testing combinations of vari-
ables with different combination rules orders the 
formal order 10 action of systematically testing 
a single variable.
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Procedure

The instrument was presented in a survey 
form online. The instrument was distributed 
among various internet groups and Listservs. The 
tasks were presented in a sequence from easy to 
hard. Having done the easy problems, which most 
of the participants did, served as a support for the 
harder performance. There is a large literature 
that shows that one gets better at performance in 
going from easy to hard (Aamodt and Mcshane, 
1992; Hodson, 2006). The items were coded as 
correct or incorrect with missing answers being 
assumed incorrect. 

Data was analyzed using the Rasch model. 
The Rasch analysis yields two scales, the person 
stage of performance and the Rasch scaled item 
difficulty. The Rasch scaled item difficulty will be 
analyzed in this paper. First, independent sample 
t-tests were used to test the existence of gaps 
between two adjacent orders. It tested whether 
these gaps are statistically significant. Secondly, 
several analyses were done to test whether the 
order of hierarchical complexity is a linear and 
equally spaced scale. Analysis that were used are 
simple linear regression model, lack of fit test, a 
test on whether spacings are equally spaced and 
a test on how much we can perturb the linearity 
of the order of hierarchical complexity before 
significantly reducing its predicting power. 

Results

Rasch Analysis

A Rasch analysis ( Linacre, 2009, Adams 
and Khoo, 1993) was performed. Rasch analysis 
is a method for obtaining objective, fundamental, 
linear measures (qualified by standard errors and 
quality-control fit statistics) from stochastic ob-
servations of ordered category responses (Wright 
and Stone, 1979). It used logistic regression that 
serves to minimize the errors in person and item 
scores. Rasch analysis then takes the raw person 
and item scores and converts them into equal 
interval linear scales. The item scores, the Rasch 
scaled item difficulty, represent how difficult the 
item was. The person scores represent how well 
a person dealt with the item difficulty. The Rasch 

scaled item difficulty was used to estimate linear 
measures. With Rasch analysis, these measures 
are item-free (item-distribution-free) and person-
free (person-distribution-free). This means that 
the measures are statistically equivalent for the 
items regardless of which persons (from the same 
population) are analyzed, and for the people re-
gardless of which items (from the same set) are 
analyzed. Analysis of the data at the response-
level indicates to what extent these ideals are 
realized within any particular data set. The higher 
a person’s performance score relative to the dif-
ficulty of an item, the higher the probability of a 
correct response on that item by the participant. 
When a person’s location on the latent trait is 
equal to the difficulty of the item, by definition, 
there is a 0.5 probability of a correct response. 

This paper only analyzed the Rasch scaled 
item difficulty. The result of Rasch analysis 
shows that the range of the Rasch scaled item 
difficulty was from −4.56 (Primary 7) to 3.94 
(Systematic 11). The higher an item is on the 
scale, the more difficult the task. See Figure 2 of 
the Rasch Variable Map. On the right side of the 
scale are items. The letters stand for the orders of 
hierarchical complexity of the items (P—Primary 
7, C—Concrete 8, A—Abstract 9, F—Formal 10, 
S - systematic 11). The Rasch variable map shows 
that mean Rasch scaled item difficulty for a given 
order of hierarchical complexity is sequenced in 
the same way the orders of hierarchical complex-
ity are as shown in Figure 2, the Rasch map. In 
addition, there were no items that were out of 
order as well. These conditions satisfy the weak 
and intermediate condition for an ordinal scale. 

Test for Gaps

By visual inspection of the Rasch variable 
map (see Figure 2), there are gaps between two 
adjacent orders of hierarchical complexity. To an-
swer the questions more precisely about whether 
or not there are gaps between items of adjacent 
orders of hierarchical complexity, an independent 
sample t-test was used. It tested whether the gaps 
were significant. Some definitions are set forth. 

Gap = Lowest Rasch scaled item dif-
ficulty score of the next higher order 



	M odel of Hierarchical Complexity	 15

of hierarchical complexity items minus 
the Highest Rasch scaled item difficulty 
score of items from the next lower order 
of hierarchical complexity items.
Item break = Rasch scaled item diffi-
culty of the more difficult item—Rasch 
scaled item difficulty of the next less 
difficult item.
The null hypothesis was that the average size 

of gaps between items from adjacent orders of 
hierarchical complexity are equal to the average 
difference in Rasch item difficulty for the lower 

of the adjacent hierarchical complexity groups. A 
model was constructed to test the hypothesis. For 
details of how the model was constructed, please 
see Appendix B.

Let i = the observation number, which 
goes from 1 to 102. 
DRi = b + a7 I7i + a8 I8i + a9 I9i + a10 I10i 
+ a11 I11i + ei where
DRi = the difference of Rasch scaled 
item difficulty between item I and item 
(i – 1)
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                    |
                # T |
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             ##     |
                    |
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               #### |
                   S|  sy sy
                ##  |  sy sy sy
    3           ### +
                 ## |  sy sy sy  sy sy
                 #  |  sy sy sy  sy sy sy sy (Systemtatic)
                .## |S sy sy sy  sy sy sy sy sy
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                 #  |
                   M|
          ########  |
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Figure 2. Rasch Variable Map of laundry Instrument
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b = the average of gaps
an = the difference between the average 
of item break at order n and the average 
of Gap b 
Ini = {1,0} {is, is not} a difference in 
Rasch scores for Hierarchical order or 
group n
ei is a random variable fulfilling the 
Gauss Markov conditions. 

The results showed that indeed, there was a sig-
nificant sized Gap. After data was fit to the model:

DR = 0.65500 − 0.57447 I7i − 0.58864 I8i 
− 0.60553 I9i − 0.62237 I10i − 0.58397 I11i 

This equation shows that the average of gaps was 
0.655. The average item break at each stage was 
smaller than the average gap size as shown by the 
an being negative.

The null hypothesis was that the average gaps 
between contiguous orders of hierarchical com-
plexity are equal to the item breaks within each 
order. There were 5 null hypotheses: an = 0, n = 
7, 8, 9, 10, and 11. The alternative hypothesis was 
that the average size of gap was bigger or smaller 
than the average difference in Rash item difficulty 
scores. There were 5 alternative hypotheses: an ≠ 
0, n = 7, 8, 9, 10, 11. 

Five tn-tests were used to test the nulls against 
the alternative. For the formula for the t-test, 
please refer to the Appendix B. The result of the 
tests showed:

t7 (97) = −10.014, p < 2-16 ≈ 0.00000
t8 (97) = −9.667, p < 2-16 ≈ 0.00000
t9 (97) = −10.555, p < 2-16 ≈ 0.00000 
t10 (97) = −10.848, p < 2-16 ≈ 0.00000 
t11 (97) = −10.499, p <2-16 ≈ 0.00000.
The null hypothesis was rejected in all the 

tests implying that the items breaks were sig-
nificantly different from the gaps. In addition, 
because the average of Items Breaks at each order 
was smaller than the average of gaps, average item 
breaks were significantly smaller than the average 
gaps. Therefore, this shows that gaps exist.

Test for Linearity and Equal Spacing
 This section investigates whether the or-

der of hierarchical complexity was a linear and 
equally spaced scale. If the Rasch scaled item 
difficulty of task items has equal spacing, it im-
plies that the orders of hierarchical complexity 
had to have equal spacing. What else could have 
produced the equal spacing? We tested a number 
of ways to look at the possibility of non-linearity. 
We recognize that it is impossible to prove linear-
ity by failing to reject the null hypothesis. In all 
cases, we failed to reject the null hypothesis that 
things were linear. As far as we know, if one fails 
to reject null hypothesis, one can still hold the as-
sumption of linearity. The following results failed 
to provide evidence to show that the scale is not 
linear. There were four tests: 1) a simple regres-
sion model was constructed; 2) a lack of fit test 
shows that the linear regression model explains 
as much variance as the separate means model, 
indicating that linearity cannot be rejected; 3) a 
test on the spacing between Rasch scaled item 
difficulty are done, showing that equal spacing 
cannot be rejected; 4) we perturbed the linear 
order of hierarchical complexity. This was another 
way of testing whether the model of hierarchical 
complexity was linear. This was to test how well 
the linear regression predicts Rasch scaled item 
difficulty when the Task order of hierarchical 
complexity was perturbed, or noise was added 
to the scale. 

Simple Linear Regression. First, a linear re-
gression model was constructed. The dependent 
variable was the Rasch scaled item difficulty. The 
independent variable was the item order of hierar-
chical complexity. The parameters were the slope 
of the straight line function, b and the intercept, a.

Rasch scaled item difficulty = a + b * n; 
n = Item order of hierarchical complexity, a = 
intercept, b was the slope, and n = 7, 8, 9, 10, 11. 
The linear regression model shows that task order 
of hierarchical complexity significantly predicted 
Rasch scaled item difficulty, r (98) = .983, r2 = 
.975, p < 0.001. The size of the variance explained 
by the item order of hierarchical complexity, an 
ordinal scale, showed that the linear scale was 
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highly predictive of the Rasch scaled item dif-
ficulty. See Figure 3 for the regression line. 

To securitize the result, the residual graph 
was shown in Figure 4. It shows that for task or-
ders 7, 8, 9, 10 and 11, the mean of the residuals 
center around zero, and there is no indication of 
systematic relationship between the residuals and 
the task order of hierarchical complexity. 

Test for Linearity. A lack of fit test was used 
to analyze whether the relationship between 
orders of hierarchical complexity and Rasch 
scaled item difficulty was linear. The lack of fit 
test compares the residuals of the linear regres-
sion model to the separate means model. When 
the linear regression model explains significantly 
less variation of the dependent variable than the 
separate means model, it is usually an indicator 
that the linear regression model is not a good fit 
to the data. The relationship between the indepen-
dent variable and dependent variable is not linear 
(Ramsey and Schafer, 2012).

The null hypothesis was the linear regression 
model explains significantly less variance than the 

separate means model. The alternative hypothesis 
was the linear regression model and the separate 
means model explains equal amount of variance 
in the data.

For detailed procedures of the test, please 
see Appendix C. The lack of fit test shows that 
F(3)  =  1.944, p = 0.128. The separate means 
model did not explain significantly more vari-
ance than the linear regression model. The null 
hypothesis was that the spacing was unequal was 
not rejected. The result indicated that the linear re-
lationship between the Task order of hierarchical 
complexity and the Rasch scaled item difficulty 
was not rejected by this analysis. The linearity 
assumption still held.

Test for Equal Spacing. Using a t-test, this 
analysis tests whether there are equal spacing 
between adjacent orders of hierarchical complex-
ity. Spacing is defined as the increment from the 
average of Rasch Scaled Item Difficulties of a 
lower order to the average of Rasch scaled item 
difficulty of the next higher order. There are four 
spacings as there are five orders of hierarchical 

14

.  |  cr
.#########  |

-3        .####  +  pr
.##  |  pr pr pr pr
.##  |  pr pr pr pr pr pr pr pr pr pr (primary)

#  |  pr pr
-4             #  +  pr

#  |
|  pr pr

.  |T
-5            . T+

.  |
|
|

-6            .  +
<less>|<easier>

Figure 2. Rasch Variable Map of laundry Instrument
Figure 3. Simple Linear Regression of laundry Data

Figure 3. Simple Linear Regression of laundry Data



18	 Commons, et al.

complexity. The result of this analysis showed 
that we cannot reject the null hypothesis of equal 
spacing. The following is a brief explanation of 
the analysis. For complete steps of the calculation, 
please refer to Appendix D. 

The following linear regression model was 
constructed:

RD = Rasch scaled item difficulty = b7 + 
g8 I8i + g9 I9i + g10 I10i + g11 I11i + ei 
RD = Rasch scaled item difficulty;
Ini = {1, 0} when the item {is, is not} 
at the order of hierarchical complexity 
denoted by n. n = {7, 8, 9, 10, 11}; 
b7 = is the average value of the Rasch 
scaled item difficulty for items in order 
7.
g8 = the estimate of the difference be-
tween the average Rasch scaled item 
difficulty at order 8 score and average 
Rasch scaled item difficulty at order 
7 score

Accordingly, (b7 + g8) estimated the average 
Rasch scaled item difficulty at order 8. Similarly, 
{g9, g10, g11} estimated the difference between the 
average Rasch scaled item difficulty at order {9, 
10, 11} score and the Rasch scaled item difficulty 
at order 7. Accordingly, {b7 + g9, b7 + g10, b7 + g11} 
estimated the average Rasch scaled item difficulty 
for items at orders {9, 10, 11}. 

The null hypothesis was that all spacings are 
the same. The alternative hypothesis was that at 
least one pair of spacings are different. For the 
purpose of calculation, the null hypothesis was 
broken into three parts.
	 H01: The spacing between order 9 and 8 will 

be the same as the spacing between order 8 
and 7.

	 Or g9 − 2g8 = 0.
	 H02: The spacing between order 10 and 9 will 

be the same as the spacing between order 9 
and 8. 

	 Or, g10 − 2g9 + g8 = 0

Figure 4. Residuals of the Simple Linear Regression of laundry Data

1
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	 H03: The spacing between order 11 and 10 
will be the same as the spacing between order 
10 and 9. 

	 Or, g11 − 2g10 + g9 = 0
One sample t-tests were used to test these 

hypotheses. Please refer to Appendix D for the 
details of the computation. The result showed that 
we cannot reject any of these null hypotheses: 1) 
For H01, t (97) = 0.240, p = 0.595; 2); For H02, t 
(97) = 0.0526, p = 0.479; 3); lastly, for H03, t (97) = 
0.7949, p = 0.214. Therefore, we cannot reject the 
null hypotheses that all the spacing between the 
orders is the same. This result is consistent with 
the result of lack of fit test, which cannot reject 
linearity of the orders of hierarchical complexity.

Perturbations 

As it is shown in previous analysis, linearity 
of order of hierarchical complexity cannot be 
rejected. This, however, does not strictly prove 
equal spacing. This section of the paper explores 
how much random noise needs to be added to the 
orders of hierarchical complexity in order to reject 
the linearity hypothesis. This gives an upper limit 
to how far from equal spacing and linearity the 
orders might be.

A computer randomization program gener-
ated a list of 0s and 1s. When 0 came up, 0.05 was 
subtracted from nth order of hierarchical complex-
ity. When 1 came up, 0.05 is added to the order 
n. For example, if 1 comes up, order 7 becomes 
order 6.95. If 0 comes up, order 7 becomes order 
7.05. This procedure was applied to every order, 
but only once per order. The result orders from 

the perturbations were 6.95, 8.05, 9.05, 9.95 and 
10.95.

Next, a linear regression of the Rasch scaled 
item difficulty was run on the newly defined order 
scale. What was of interest was the predictability 
of the new scale, or the value of r. The result 
showed that r = 0.987. The same procedure was 
repeated three more times. The r’s at the noise 
level of 0.05 are 0.987, 0.988, 0.988, 0.975, which 
gives an average of 0.9875 as seen in Figure 5. 
The reason to repeat the procedure and obtain 
the average is because what was of interest was 
the average predictability, or value of r, of the 
perturbed order of hierarchical complexity. Every 
time the procedure was applied, the resulting new 
scale is different. Multiple samples were obtained 
making the results closer to the real mean. 

Next, the same procedure was applied using 
noise level 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 
and 0.5. The respective average of r’s of the linear 
regression models are 0.9875, 0.9865, 0.98425, 
0.98075, 0.98225, 0.974, 0.9695, 0.96575, 
0.97025, 0.94425. A quadratic linear regression 
was run on the r scores against the size of the 
perturbation. The result showed that the size of the 
perturbation significantly predicted the r scores 
with r(9) = 0.933, r2 = 0.871.

In addition, it is found that perturbing the 
order of hierarchical complexity by more than 
0.25 produced a significant difference in the pre-
dictability of the scale. This is more than 1/4 of 
an order. Using the Fisher r-to-z transformation, 
the significance of the difference between the r 
found in the original linear regression model and 
the r’s found in the new models when the order 
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of hierarchical complexity is perturbed, were as-
sessed. When the noise was 0.25, the difference 
was significant at the 0.1 level, with z = 1.68, p 
= 0.093. When noise = 0.35, the difference was 
significant at 0.05 level, with z = 2.74, p = 0.006.

Discussion

The results indicated that there are gaps be-
tween stages as the null hypothesis was rejected 
in all the t-tests performed to test for existence of 
gaps. According to the results, the items breaks are 
significantly different from the gaps. In addition, 
because the average of Items Breaks at each order 
was smaller than the average of gaps, average item 
breaks were significantly smaller than the average 
gaps. Therefore, gaps and item breaks are not the 
same and gaps do exist. The existence of gaps 
shows that the ordinal nature of the scale is not 
just an assumption. The “stage process” reflects 
the ordinality of underlying tasks. 

Results also supported the hypothesis that 
there is equal spacing between orders of Hierar-
chical Complexities and it is a linear scale. The 
simple linear regression analysis showed that the 
size of the variance explained by the item order of 
hierarchical complexity, an ordinal scale, shows 
that the linear scale was highly predictive of the 
Rasch scaled item difficulty. The lack of fit test 
showed that the linear regression model and the 
separate means model explained equal amount 
of variance in the data which indicates that the 
order of hierarchical complexity is a linear scale. 
Consistent with this result is also the result from 
the t-tests for equal spacing. We were unable to 
reject the null hypothesis that the spacing between 
the orders is the same. More evidence to substanti-
ate the claim that there is equal spacing between 
orders comes from the results of the perturbation 
of linear order of hierarchical complexity. The re-
sults showed that the linear regression did predict 
Rasch scaled item difficulty when the Task order 
of hierarchical complexity was perturbed, or noise 
was added to the scale. Again, this supports the 
claim that there is equal spacing between orders of 
hierarchical complexity and that the scale is linear. 

Implications

The fact that there are gaps between orders 
of hierarchical complexity and that the scale is 
equally spaced and linear implies that the dif-
ficulty of going to the next stage is the same 
regardless of what stage someone is performing 
at. This has large numbers of implications. This 
allows one to treat orders as actual numbers, and 
not just indication of relative position. 

It might mean the order of hierarchical com-
plexity, n, is a measure of the quantity of hierar-
chical information. Given that tasks at order n + 
1 are defined by and coordinate two or more tasks 
at order n, the minimum number of order 1 tasks 
that an order n task is 2n. Equal spacing might 
indicate that 2n is well defined and therefore log 
2n = n, a parallel notion to bits. That might mean 
that n is a measure of the quantity of hierarchical 
information and could be called Hbits. 

If n is a measure of hierarchical information, 
it might be applied to reductionism in general. 
For example, the hierarchy of: 1) Strings which 
are combined to form; 2) Quarks; which are com-
bined to form 3) Subatomic particles which are 
combined to form; 4) Atoms which are combined 
to form; 5) Molecules; 6) etc. Hierarchical infor-
mation is gained as one moves up the hierarchy. 
The actions are the combining of the lower order 
entities into the higher order ones.

Future Research

Although gaps exist between adjacent order 
tasks, it does not mean that development does 
not take place within these gaps. Development 
does not show up as correct next order task ac-
tions. In addition to order task actions, there are 
subtask actions between orders (Commons, in 
press). Subtask actions organize only one action 
from the same order of hierarchical complexity 
and one or more from previous orders. They 
are necessary prerequisites to other same order 
tasks. Subsubtask actions coordinate actions 
from different orders that are precursors that are 
necessary for acquisition of subtask actions but 
are not necessary for performance after acquisi-
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tion. Now that it has been established that there 
are gaps and equal spacing between orders of 
Hierarchical Complexities, a future direction for 
research would be to investigate how subtask and 
subsubtask actions work between stages.
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Appendix A

Two-decision tasks used by Ratcliff and McKoon (2006).
For each experiment, on alternating blocks of trials, instructions stressed that responses be either 
as accurate as possible or as fast as possible. The subjects were given feedback appropriate to the 
instructions, either accuracy feedback on each trial or a “too slow” message when an RT (Response 
Time) was over 700 msec. Responses were given by using specific keys on the keyboard.

Signal Detection
For each trial, a number of asterisks between 1 and 100 was generated from a signal distribution, 
normal with mean 57.5, or a noise distribution, normal with mean 39.5, each with an SD of 14.4. 
The asterisks were placed in random positions in a 10 X 10 array of blank characters on a computer 
screen. The subjects were asked to decide whether the number of displayed asterisks was “large” 
or “small.” Accuracy feedback was given on all trials: If the number of asterisks was very large or 
very small, feedback indicated that “large” or “small,” respectively, was the correct response. For 
intermediate numbers of asterisks, feedback was probabilistic, sometimes indicating “large” and 
sometimes “small” as the correct response. There were 12 blocks of 96 trials per session. For the 
data analyses, the numbers of asterisks were grouped into eight experimental conditions so that the 
mean RTs and accuracy values were about the same for the stimuli within a group.

Letter Discrimination
For each block of trials, there were two target letters continuously displayed in the top left and right 
corners of the computer screen. On each trial, one of the letters was displayed at the center of the 
screen for 10, 20, 30, 40, 50, or 60 msec and then masked. A subject’s task was to indicate which 
letter was presented. There were 12 blocks of 96 trials per session. Performance for the 40-, 50-, and 
60-msec durations was near ceiling, so data from these conditions were combined into one condition 
for data analyses.

Brightness Discrimination
The stimuli were 64 X 64 squares of black and white pixels displayed on a gray background of 320 
X 200 pixels. There were six levels of brightness for the squares, achieved with six values of the 
probability of a pixel being white (.350, .425, .475, .525, .575, and .650). A square was displayed for 
50, 100, or 150 msec, followed by a mask made up of four 64 X 64 checkerboard patterns presented 
sequentially, and the subjects were asked to decide whether each square was “bright” or “dark.” There 
were eight blocks of 144 trials per session.

Recognition memory
The stimuli were high-, low-, and very-low-frequency words (Ratcliff, Thapar, and McKoon, 2004) 
in 20 study-test blocks per session. For each block, the study list consisted of words displayed for 
1 sec each, 9 presented once and 9 presented three times (3 high, 3 low, and 3 very low frequency 
in each case), and the immediately following test list consisted of the 18 studied words plus 18 new 
words (6 high, 6 low, and 6 very low frequency). For each session, stimuli were chosen randomly 
without replacement from the three pools.
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Appendix B  
Test for gaps

The following model is proposed to answer the question, “Is there really a gap?”  

DRi = b Ji + g7 I 7i + g8 I8i + g9 I9v + g10 I10i + g11 I11i + ei	 [1]

Let i = the observation number, it goes from 1 to 100. It used to define the difference between 
Rasch item scores within a group 	
DRi = Rash Scaled Item Difficulty i - Rasch scaled item difficulty i − 1. The Rasch scores 
are sorted from smallest at the bottom to largest at the top
Ji = {1,0} according as the observation I {is, is not} a gaps difference;
I indicates which group a difference in item score belongs to (that is, group 7, group 8, group 
9, group 10 or group 11); that is, it represents the difference score within each difficulty 
group (7, 8, and so on).
n is the order [or group, that is, 7, 8, 9, 10, 11]
Ini = {1,0} {is, is not} a difference in Rasch scores for Hierarchical order or group n;
b is the Average of the gaps scores;
g (gamma) or rather gn is the Average continuous difference score in Hierarchical level n; 
Epsiloni, ei , is a random variable fulfilling the Gauss Markov conditions	
There is a linear dependency in this model, namely Ji + I7i + I8i + I9i + I10i + I11i = 1
To eliminate this linear dependency, solve for Ji: Ji = 1 – (I7i + I8i + I9i + I10i + I11i )

Substitute the value for Ji into the model (equation [1]) and combine like terms. Equation [2] results:

DRi = b + (g7 − b) I7i + (g8– b) I8i + (g9 – b) I9i + (g10 – b) I10i + (g11 – b)I11i + ei 	 [2]

Let an = (gn − b), and let an denote the least squares estimate of an 

DRi = b + a7 I7i + a8 I8i + a9 I9i + a10 I10i + a11 I11i + ei 	 [3]

After data is fit to the model,

DR = 0.65500 − 0.57447 I7i − 0.58864 I8i – 0.60553 I9i − 0.62237 I10i − 0.58397 I11i 

This equation shows that the average of gaps is 0.655. All an‘s are negative, which shows that 
the average item break at each stage is smaller than the average gaps.

The null hypothesis is that the average gaps between contiguous orders of hierarchical complexity 
are equal to the average difference in Rash item difficulty for the lower of the contiguous hierarchical 
complexity groups. There are 5 null hypotheses: an = 0, n = 7, 8, 9, 10, 11. The alternative hypothesis 

Appendix B continues on the following page.
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is that the average gap is bigger or smaller than the average difference in Rash item difficulty scores.  
There are 5 alternative hypotheses: an ≠ 0, n = 7, 8, 9, 10, 11.  

t-tests can be used to test the nulls against the alternative. The 5 t-tests are:
t = an/SE(an)
The result of the tests show that 
t7(97) = −10.014, p < 2e – 16 ***  
t8(97) = −9.667, p < 8.5e – 16 ***
t9(97) = −10.555, p < 2e – 16 ***   
t10(97) = −10.848, p < 2e – 16 ***   
t11(97) = −10.499, p < 2e – 16 ***
All the tests show that the null hypothesis is rejected and the items breaks are significantly dif-

ferent from the gaps. In addition, because the average of Items Breaks at each order is smaller than 
the average of gaps, average item breaks are significantly smaller than the average gaps. Therefore, 
we have shown that gaps exist.

Appendix B continues from the previous page.
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Appendix C  
Lack of fit Test

The separate means model assigns a parameter to every group. The parameters represent the 
group means. 

Rasch scaled item difficulty = b7 + g8 I8i + g9 I9i + g10 I10i + g11 I11i + ei

Ini is a dummy variable. i = 7, 8, 9, 10, 11. Ini = 1 when the item is at the order of hierarchical 
complexity denoted by the subscript. Ini = 0, when the item is at a different order of hierarchical 
complexity from the subscript. 

After data is fitted to the model, it shows that r = 0.988, r2 = .977, F (4, 97) = 1023, p < 0.001. 
In addition, residual standard error (RSE) = 0.363, df = 97

The Linear Regression Model maps a linear relationship between the independent and dependent 
variables. 

Rasch scaled item difficulty = α + b * x
x = Item order of hierarchical complexity, 
a = intercept, 
b is the slope.
Result shows that Residual standard error (RSE) = 0.3681 df = 100
Testing for lack of fit:
H0: the linear regression model explains significantly less variance than the seperate means model.
H1: the linear regression model and the seperate means model explains equal amount of vari-

ance in the data.
F- Stat 	 = [SSResLR – SSResSM]/[dfLR – dfSM]/d2

SM

	  = [RSELR
2
 * dfLR – RSESM

2 * dfSM]/[dfLR – dfSM]/d2
SM  

	 = (0.36812 *100 − 0.3632 * 97)/(100 − 97)/0.3832 
	 = 1.9438, df = 100 − 97 = 3
	 p = 0.1276 
The result shows that we cannot reject the null hypothesis that the linear regression model 

explains as much variance as the separate means model, providing supporting evidence to linearity.
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Appendix D  
Test for Equal Spacing

The following model is constructed to test for equal spacing. 

Rasch scaled item difficulty = Β7 I7i + Β8 I8i + Β9 I9i + Β10 I10i + Β11 I11i + ei	 [1]

Rasch scaled item difficulty is the difficulty of item i. 
Ini is a dummy variable. i = 7, 8, 9, 10, 11. Ini = 1 when the item is at the order of hierarchical 

complexity denoted by the subscript. 
Ini = 0, when the item is at a different order of hierarchical complexity from the subscript. Note 

that B stands for beta, the true underlying parameter. 
b is its estimate. 
Note also that I have added a subscript i denoting an observation. 
Note that all of the items are in one of the five groups; hence there is a linear dependency among 

the indicators of every item i. Next, transformation to equation [1] is applied. 
For all items i,

I7i + I8i + I9i + I10i + I11i = 1	 [2]

Solve equation [2] for I7i , which is equation [3]

I7i = 1 − I8i + I9i + I10i + I11i, and substitute the solution for I7i into equation [1],	 [3]

Rasch scaled item difficulty = b7 (1 − I8i + I9i + I10i + I11i) + b8 I8i + b9 I9i  
+ b10 I10i + b11 I11i + ei.	 [4]

Combine similar terms, 

Rasch scaled item difficulty = b7 + (b8 – b7) I8i + (b9 – b7) I9i  
+ (b10 – b7) I10i + (b11 – b7) I11i + bi	 [5]

Let 
g8 = (b8 − b7), 
g9 = (b9 − b7),
g10 = (b10 − b7), 
g11 = (b11 − b7). 

And substitute these values into equation [5],

 Rasch scaled item difficulty = b7 + g8 I8i + g9 I9i + g10 I10i + g11 I11i + ei	 [6]

Appendix D continues on the following page.
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Equation [6] describes a linear regression producing least-squares estimates {b7, g8, g9, g10, g11} 
for {B7, Γ8, Γ9, Γ10, Γ11}.

b7 = the average value of the Rasch scaled item difficulty for items in order 7. 
g8 = is the estimate of the difference between the average Rasch hierarchical order 8 score and 

the Rasch hierarchical order 7 score.  
Accordingly, b7 + g8 estimates the average Rasch scaled item difficulty at order 8. Similarly, 

{g9, g10, g11} estimate the difference between the average Rasch scaled item difficulty at orders {9, 
10, 11} and  the average Rasch scaled item difficulty at order 7. Accordingly, {b7 + g9, b7 + g10, b7 
+ g11} estimate the average Rasch scaled item difficulty for items in hierarchical orders {9, 10, 11}. 

Spacing is defined as the increment from the average of Rasch Scaled Item Difficulties of a lower 
order to the average of Rasch Scaled Item Difficulties of the next higher order. The hypothesis we 
are fundamentally interested in testing is whether there is the same incremental difference between 
B7,B8,..., and B11. The null hypothesis for this analysis is that the spacings between each pair of adjacent 
orders are the same. There are three versions of this null hypothesis, as indicated in the following.

H01: The Rasch scaled item difficulty difference between order 9 and 8 is the same as the Rasch 
scaled item difficulty difference between order 8 and 7. 

H02: The spacing between order 10 and 9 is the same as the spacing between order 9 and 8.
H03: The spacing between order 11 and 10 is the same as the spacing between order 10 and 9.
First, consider H01. The spacing, or Rasch scaled item difficulty difference between order 9 and 

8 is estimated by 
b9 − b8 = (b9 − b7) − (b8 − b7) = g9 − g8  
The spacing between order 8 and 7 is estimated by (b8 – b7) = g8. Therefore, 
H01: (g9 – g8 ) = g8 ,or, g9 – 2g8 = 0
Similarly, 
H02: g10 − 2 g9 + g8 = 0
H03: g11 − 2 g10 + g9 
A one-sample t-test can be conducted to test these hypotheses. The formula is
t = (Estimate of Spacing 1 − Estimate of Spacing 2 − 0)/SE((Estimate of Spacing1 – Estimate 

of Spacing2)
For H01: g9 − 2g8 = 0, 
SE (g9 − 2g8) = (Var (g9) + 4 Var (g8) + 4 Cov (g9, g8))

1/2 = 0.290
Hence the t value with 97 degrees of freedom is
t(97) = ((g9 − 2g8) − 0)/ SE(g9, g8) = 0.240, p = 0.595 
Therefore, we cannot reject the null hypothesis that the spacing between order 9 and 8 is the 

same as the spacing between order 8 and 7.
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Next, for H02, g10 − 2g9 + g8 = 0
SE (g10 −2g9 + g8 ) = (Var(g10) + 4 Var(g19) + Var(g8) + 4 Cov (g10, g9) + 2 Cov (g10, g8) + 4 Cov 

(g9 , g8 ))
1/2 = 0.3864347

Hence the t value with 97 degrees of freedom is
t(97) = (g10 −2 g9 + g8) − 0)/ SE (g10 −2 g9 + g8) = 0.0526, p = 0.479
Therefore, we cannot reject the null hypothesis that the spacing between order 10 and 9 is the 

same as the spacing between order 9 and 8.
Lastly, for H03: g11 – 2g10 + g9 = 0
SE(g11 – 2g10 + g9) = (Var(g11) + 4Var (g10) + Var(g9) + 4 Cov (g11, g10) + 2 Cov (g11, g9) + 4Cov 

(g10, g9))
1/2 = 0.3778

Hence the t value with 97 degrees of freedom is
t(97) = (g11 – 2g10 + g9) – 0)/ SE (g11 – 2g10 + g9) = 0.7949, p = 0.214
Therefore, we cannot reject the hypothesis that the spacing between order 11 and 10 is the same 

as the spacing between order 10 and 9.
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