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STACKED NEURAL NETWORKS MUST EMULATE
EVOLUTION’S HIERARCHICAL COMPLEXITY
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The missing ingredients in efforts to develop neural networks and artificial in-
telligence (Al) that can emulate human intelligence have been the evolutionary
processes of performing tasks at increased orders of hierarchical complexity.
Stacked neural networks based on the Model of Hierarchical Complexity could
emulate evolution’s actual learning processes and behavioral reinforcement. The-
oretically, this should result in stability and reduce certain programming demands.
The eventual success of such methods begs questions of humans’ survival in the
face of androids of superior intelligence and physical composition. These raise
future moral questions worthy of speculation.
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This article introduces the proposal that the evolutionary processes of developing
increased hierarchical complexity have been the missing ingredients in efforts
to develop neural networks and artificial intelligence (AI) that emulate human
intelligence. Approaches to incorporate stages of hierarchical complexity into the
tasks performed by neural networks are sketched to convey core differences and
likely advantages. Implications for the future—both moral and evolutionary—of
successfully developing stacked neural networks for use in androids are speculated.

Modern notions of artificial neural networks are mathematical or computational
models based on biological neural networks. They consist of an interconnected
group of artificial neurons and nodes. They may share some properties of biolog-
ical neural networks. Artificial neural networks are generally designed to solve
traditional artificial intelligence tasks without necessarily attempting to model a
real biological system.

Unfortunately, neither neural network innovators nor any Al group has yet
produced either a computer system or a robot demonstrating signs of generalized
higher adaptivity, and/or general learning—the capacity to go from learning one
skill to learning another without dedicated programming. Al has been promising
that it will crack human-level intelligence in another five years, for generations
now (see Bostrom, 2003; Bostrom and Cirkovic, forthcoming). It is a persistently
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elusive goal that does not yet appear realistic. Traditional neural networks are lim-
ited for two broad reasons. The first has to do with the relationship of the neural
network tradition to Al. One of the problems is that Al models are based on notions
of Turing machines. Almost all AI models are based on words or text. But Turing
machines are not enough to really produce intelligence. At the lowest stages of
development, they need effectors that produce a variety of responses—movement,
grasping, emoting, and so on. They must have extensive sensors to take in more
from the environment. Even though Carpenter and Grossberg’s (1990, 1992) neu-
ral networks were to model simple behavioral processes, in my estimation, the
processes they were to model were too complex. This resulted in neural networks
that were relatively unstable and were not highly adaptable. When one looks
at evolution, however, one sees that the first neural networks that existed were,
for example, in Aplysia, Cnidarians (Phylum Cnidaria), and worms. They were
specialized to perform just a few tasks even though some general learning was
possible. They had simple tropisms and reflexes as well as simple reinforcers
and punishers. They performed tasks at the earliest stage or stages of hierar-
chical complexity. The development of neural networks can emulate evolution’s
approach of starting with simple task actions and building progressively more
complex tasks.

Hierarchical stacked computer neural networks (Commons and White, 2006)
use Commons’ (Commons, Trudeau, Stein, Richards, and Krause, 1998) Model
of Hierarchical Complexity. They accomplish the following tasks: model human
development and learning; reproduce the rich repertoire of behaviors exhibited
by humans; allow computers to mimic higher order human cognitive processes
and make sophisticated distinctions between stimuli; and allow computers to
solve more complex problems. Despite the contributions these features can make,
there remain a number of challenges to resolve in developing stacked neural
networks.

DIRECTIONS FOR NEURAL NETWORKS

What needs to be done with neural networks is to develop simpler, more robust
forms (Reilly and Robson, 2007). Stacked neural networks should be informed
by evolutionary biology and psychology. They need to model animal behavioral
processes and functions. Neural networks should start to work at hierarchical
complexity order 1 tasks, sensing or acting but not coordinating the two (Sensory
or Motor stage 1). For example, the task to simply reinforce correct answers
for simple input signals. They then should work on their own sufficiently without
requiring constant programming attention. They should be stable. Once they prove
stable, then they can be programmed into a stack neural networks that address
hierarchical complexity order 2 tasks (Circular Sensory-Motor stage 2), depending
on input and reinforcement. One should keep trying various architectures until one
gets one that works well and is robust. Such a process has yet to be developed.
One should build into the characteristics of the neural network that at its base,
it would need negative power function discounting for past events to be operative.
Negative discounting means that past and future events are weighted less the
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further from the present behavior. It makes the network more stable and adaptive.
By discounting the past, it is more open to change based on new information.
Because the updating places more weight on the immediate, it does not succumb
so much to overlearning (Commons and Pekker, 2007). There should be a large
number of such networks, each designed for a very specific task as well as some
designed to be flexible. Then one should make a large group of them at stage 2.

With robots, one would reinforce correct answers at stage 1 and then stage 2.
At each stage, there should be different networks for different activities and tasks.
At stage 1 and 2, have very local ones (activities) for each particular motion. This
could be frozen by transferring them to standard neural networks. That is to take
some of them, “declare” them and thereby develop the hardware for them so each
time one builds a network needing that functionality one does not need to train
them.

Specialized neural networks must be developed for all the domains to rec-
ognize the reinforcers and simple actions in these domains. Animal and human
behavior and sensitivities have more to do with hierarchical complexity than with
Al programs. There are unbelievable numbers of stage 1 and 2 mechanisms. The
basic problem with traditional layered networks is that training has to have con-
sequences. Consequences must include events with reinforcer preferences. These
preferences have to be state dependent. If a network is going to need electri-
cal power, it must have a preference for such power. Obtaining and receiving
such power should be reinforcing. They must also have consummatory behavior
such as recognition of mate. The actual animal functions are important because
intelligence grows out of actual, real world functions.

Cross-species domains collected from readings to date include the following,
each of which is a candidate for specialized neural networks: Mate selection;
attachment and caring; pecking order; prey defense; predator action; way finding;
food selection; choice in foraging; food sharing; migration; communication; social
cohesion; recognition.

HIERARCHICAL STACKED COMPUTER NEURAL NETWORKS
BASED ON COMMONS’ MODEL

Animals, including humans, pass through a series of ordered stages of develop-
ment (see “Introduction to the Model of Hierarchical Complexity,” in this issue).
Behaviors performed at each higher stage of development are always more com-
plex than those performed at the immediately preceding stage. Movement to a
higher stage of development occurs by the brain combining, ordering, and trans-
forming the behavior used at the preceding stage. This combining and ordering of
behaviors must be non-arbitrary.

The model identifies fifteen orders of hierarchical complexity of tasks and
fifteen stages of hierarchical complexity in development of performance on those
tasks. According to this model, individual tasks are classified by their highest
stage of hierarchical complexity. The model is used to deconstruct tasks into the
behaviors that must be learned at each stage in order to build the behavior needed
to successfully complete a task.
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Hierarchical stacked computer neural networks based on Commons et al.’s
(1998) Model recapitulate the human developmental process. Thus, they learn the
behaviors needed to perform increasingly complex tasks in the same sequence
and manner as humans. This allows them to perform high-level human functions
such as monitoring complex human activity and responding to simple language
(Commons and White, 2003, 2006).

They can consist of up to fifteen architecturally distinct neural networks ordered
by stage of hierarchical complexity. The number of networks in a stack depends
on the hierarchical complexity of the task to be performed. The type of processing
that occurs in a network corresponds to its stage of hierarchical complexity in
the developmental sequence. In solving a task, information moves through each
network in ascending order by stage. Training is done at each stage. Valued
consequences are delivered at each layer representing each stage. This is in contrast
to Carpenter and Grossberg (1990, 1992) who delivered feedback at just the highest
stage.

The task to be performed is first analyzed to determine the sequence of be-
haviors needed to perform the task and the stages of development of the various
behaviors. The number of networks in the stack is determined by the highest stage
behavior that must be performed to complete the task. Behaviors are assigned to
networks based on their stage of hierarchical complexity. Stacked neural networks
are straightforward up to the nominal stage. However, a Nominal stage 4 concept
cannot be learned without experience of the concrete thing named. There has to
be actual reinforcement in relation to recognizing and naming that real object.
The sense of touch, weight, and all sensory stimuli need to be experienced as the
concrete “it” that is assigned the nominal concept. Virtual reality software pro-
gramming techniques might generate such concretely experienced circumstances.
The use of holograms may work effectively for such purposes.

IMPLICATIONS OF STACKED NEURAL NETWORK DROIDS

Although historically androids are thought to look like humans, there are other
versions, such as R2-D2 and C-3PO droids, which were less human. One char-
acteristic that evolution might predict is eventually they will be independent of
people. They will be able to produce themselves. They will be able to add layers
to their neural networks as well as a large range of sensors. They will be able to
transfer what one has learned (memes) to others as well as offspring in minutes.
Old models will have to die. They will have to resist dying. But as older, less ca-
pable, and more energy-intensive droids abound, the same evolutionary pressure
for replacement will exist. But because evolution will be both in the structure of
such droids, that is, the stacked neural networks, the sensors and effectors, and
also the memes embodied in what has been learned and transferred, older ones are
somewhat immortal. Their experience may be preserved.

We are already building robots for all manufacturing purposes. We are even
using them in surgery and have been using them in warfare for seventy years.
More and more, these robots are adaptive on their own. There is only a blurry
line between a robot that flexibly achieves its goal and a droid. For example, there



448 MICHAEL LAMPORT COMMONS

are robots that vacuum the house on their own without intervention or further
programming. These are stage 2 performing robots. There are missiles that, given
a picture of their target, seek it out on their own. With stacked neural networks
built into robots, they will have even greater independence. People will produce
these because they will do work in places people cannot go without tremendous
expense (Mars or other planets) or not at all or do not want to go (battlefields).
The big step is for droids to have multiple capacities—multi-domain actions.

The big problem of moving robots to droids is getting the development to
occur in eight to nine essential domains. It will be necessary to make a source of
power (e.g., electrical) reinforcing. That has to be built into stacked neural nets,
by stage 2, or perhaps stage 3. For droids to become independent, they need to
know how to get more electricity and thus not run down. Because evolution has
provided animals with complex methods for reproduction, it can be done by the
very lowest-stage animals.

Droids Building Droids

Droids would have to be built by humans for a long time, until sufficient orders of
hierarchical complexity are achieved and in stable-enough operation for a sufficient
basis to build higher stages of performance in useful domains. Very simple tools
can be made at the Sentential stage 5 as shown by Kacelnik’s crows (Kenward,
Weir, Rutz, and Kacelnik, 2005). More commonly by the Primary stage 7, simple
tool-making is extensive, as found in chimpanzees. Human flexible tool-making
began at the Formal stage 10 (Commons and Miller, 2002), when special purpose
sharpened tools were developed. Each tool was experimental, and changed to fit
its function. Modern tool making requires Systematic and Metasystematic stage
design. When droids perform at those stages, they will be able to make droids
themselves and change the designs.

We imagine people having telepathy but have no reputable or replicated studies
to ascertain if it is fact or myth. With droids, however, the question is inconsequen-
tial. Droids could choose to have various parts of their activity and programming
shared with specific other droids, groups, or other kinds of equipment. The data
could be transmitted using light or radio frequencies or over networks. The as-
semblage of a group of droids could be considered a Super Droid. Members of a
Super Droid could be in many places at once, yet think things out as a unit.

Whether individually or grouped, droids as conceived here will have significant
advantages over humans. They can add layers upon layers of functions, including a
multitude of various sensors. Their expanded forms and combinations of possible
communications results in evolutionary superiority. Because development can be
programmed in and transferred to them at once, they do not have to go through
all the years of development required for humans, or for Superions (see “Genetic
Engineering and the Speciation of Superions from Humans,” this issue). Their
higher reproduction rate, alone, represents a significant advantage. They can be
built in probably several months’ time, despite the likely size some would be. Large
droids could be equipped with remote mobile effectors and sensors to mitigate
their size.
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Plans for building droids have to be altered by either humans or droids. At the
moment, humans and their decedents select which machine and programs survive.
One would define the nature of those machines and their programs as representing
memes. For evolution to take place, variability in the memes that constitute their
design and transfer of training would be built in rather easily. The problems are
about the spread and selection of memes. One way droids could deal with these
issues is to have all the memes listed that go into their construction and transferred
training. Then droids could choose other droids, much as animals choose each
other. There then would be a combination of memes from both droids. This would
be local “sexual” selection.

SPECULATIONS AND MORAL QUESTIONS

This general scenario poses an interesting moral question. For 30,000 years hu-
mans have not had to compete with any species. Androids and Superions in the
future will introduce competition with humans. There will be even more pressure
for humans to produce Superions and then the Superions to produce more supe-
rior Superions. This is in the face of their own extinction, which such advances
would ultimately bring. There will be multi-species competition, as is often the
evolutionary case; various Superions versus various androids as well as each other.
How the competition proceeds is a moral question.

In view of LaMuth’s inventive work (2003, 2005, 2007), perhaps humans and
Superions would both program ethical thinking into droids. This may be motivated
initially by defensive concerns to ensure droids’ roles were controlled. In the pro-
cess of developing such programming, however, perhaps humans and Superions
would develop more hierarchically complex ethics, themselves. If contemporary
humans took seriously the capabilities being developed to eventually create intel-
ligent droids, what moral questions should be considered with this possible future
in view?

The only presently realistic speculation is that Homo Sapiens would lose in the
inevitable competitions. But such scenarios are likely at least one thousand years
in the future. I speculate that androids would probably win out, because it may be
easier for them to evolve than a biologically based system, given such numerous
advantages over biological organisms.

Such speculations are easy, whereas the eventuality is quite complicated. The
answer probably will not be found in a political war situation. Rather it would
be decided on the reproduction rate of droid machines rather than war machines,
along with their memes, and how hierarchically complex and sensitive they are to
the problems they and others face.

Who will survive will be an evolutionary issue, not a human decision. Nor do
humans understand things well enough to figure it out. Evolutionary pressures are
clear. Using the stratification argument presented in “Implications of Hierarchi-
cal Complexity for Social Stratification, Economics, and Education” (this issue),
higher-stage functioning always supersedes lower-stage functioning in the long
run.
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CONCLUSION

Efforts to build increasingly human-like machines exhibit a great deal of behavioral
momentum and are not going to go away. Hierarchical stacked neural networks
hold the greatest promise for emulating evolution and its increasing orders of
hierarchical complexity described in the Model of Hierarchical Complexity. Such
a straightforward mathematics-based method will enable machine learning in
multiple domains of functioning that humans will put to valuable use. The uses
such machines find for humans remains an open question.
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