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Abstract

Theories of complexity have generally not addressed hierarchical
complexity. However, within developmental psychology, notion of
hierarchical complexity have come into being in the last twenty
years. We outline the formal axioms for a model of hierarchical
complexity which assigns an order of hierarchical complexity to
every task regardless of domain. The orders correspond to natural
numbers, thus ensuring that the orders are separated by gaps of
equal size. The model naturally leads to the existence of
performance stages, thereby formalizing many implicit properties
of stage theories.
Keywords: Complexity, hierarchical complexity, formal theory,
distributivity, stage, Rasch, Saltus.

1 Introduction

Distributivity is the property of addition and multiplication on the real numbers
that ensures that a � (b + c) = (a � b) + (a � c). Of course distributivity also
plays a fundamental role in more general contexts, such as the complex numbers
and the de�nition of rings in modern algebra. The distributive law serves as a
motivation for a newer form of complexity, called hierarchical complexity, which
we aim to describe in this paper.
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In particular, the distributive law suggests that the task of evaluating a �
(b+ c) is more complex than the task of evaluating (a+ b) + c or even the two-
part task of �rst evaluating a+ b and then evaluating c� d. The evaluation of
(a+ b) + c is no more complex than addition, performed either as (a+ b) + c or
a+(b+c); the organization of the two actions of addition is arbitrary. Similarly,
in the two-part task, evaluating a + b and then c � d yields the same result as
�rst evaluating c � d and then a + b. Both of these are chain actions. On the
other hand, the evaluation of a � (b + c) requires a non-arbitrary organization
of addition and multiplication, or, equivalently, the distributive law, and is
therefore more complex than addition or multiplication. In modern algebra, the
non-arbitrary coordination of addition and multiplication leads to the de�nition
of rings, and the expressions in ring theory are usually more complex than the
expressions in group theory (which involve only one operation).
We refer to addition and multiplication as actions, a term that is commonly

used by developmental psychologists to refer to events that produce outcomes
or, equivalently, accomplish certain tasks. The study of tasks appears in psy-
chophysics (a branch of stimulus control theory in psychology) (Green & Swets,
1966; Luce, 1963) and in arti�cial intelligence (Goel & Chandrasekaran, 1992),
and in general, actions may be attributed to organisms, computers, or oth-
ers. Existent actions may be combined to produce new, more complex actions
(Binder, 2000). Our goal is to describe how to measure the complexity of an
action and to relate it to the complexity of other actions.
In the literature, two types of complexity have been identi�ed (Commons,

Trudeau, et al, 1998): horizontal (traditional) and vertical (hierarchical). (For
a review of these de�nitions, see, e.g., Wolfram 2002 and Kau¤man, 1993.)
Roughly speaking, in traditional complexity, the complexity of an action is de-
termined by the number of times a speci�c subaction is repeated. In hierarchical
complexity, the complexity of an action is determined by the non-arbitrary way
in which the subactions are organized, not how many subactions there are. In
particular, provided all other things are held constant, the order of hierarchical
complexity of an action is one greater than the order of hierarchical complexity
of its subactions, provided they are organized in a non-arbitrary way.
To illustrate one di¤erence between traditional and hierarchical complexity,

consider the action A of evaluating 1+2 and the action B of evaluating (1+2)+
3. The traditional complexity of A is smaller than the traditional complexity
of B since the action of addition is executed less often in A than in B; on
the other hand, since A di¤ers from B only in how many times addition is
executed, but not in the organization of the addition, A and B have the same
hierarchical complexity. This example shows that the two types of complexity
are independent and incommensurate.
Some examples of tasks and their orders in the model of hierarchical com-

plexity are shown in Table 1. Most of our examples will be at orders 7, 8, 9,
and 10, i.e., from the primary to the formal orders.
We state the main de�nitions and model axioms and illustrate them with

examples in Sections 2 and 3. In essence, we formalize the idea of Piaget (e.g.,
Inhelder & Piaget, 1958) and Piaget�s intellectual descendents (e.g., Campbell,
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1991; Campbell & Bickhard, 1986; Tomasello & Farrar, 1986) that a higher-
order action is de�ned in terms of lower-order actions in a non-arbitrary way
by means of permutations. This formal construction allows us to separate the
order of an action from participant performance, yielding a clear notion of stage
of performance in Section 4. Finally, in Section 5, we de�ne the measure of the
an action as the minimum number of simple actions needed to accomplish the
action; for an action of order n, its measure is 2^n:We test the predictions of the
model via Rasch and Saltus analysis of two task series in Sections 6 and 7, and
we summarize our �ndings, particularly in relation to the stage of performance,
in Section 8.
Some applications of this axiomatic model include stacked neural networks

(Commons & White, 2004), programmed instruction in the discussion of pre-
requisites (Holland & Skinner 1961), and precision teaching in the discussion of
combinations being built out of elements (e.g., Commons & Richards, 2002;
Kubina & Morrison, 2000). Although the model itself has been previously
described (Commons, Trudeau, et al, 1998), the formal, axiomatic version is
presented here for the �rst time.

2 Actions

We begin by de�ning the fundamental terms. In a given system, there exist
certain tasks that are to be accomplished. These tasks are accomplished via
task-actions. Formally, a task-action, often abbreviated simply as an action,
is de�ned inductively. There exists an unique simple action ~A, which is the
simplest action possible in a system. (This is in agreement with Luce�s choice
theory (Luce, 1959).) Every other action A consists of at least two (and pos-
sibly in�nite many) previously de�ned actions and a rule for organizing those
previously de�ned actions. Thus, every nonsimple action A is an ordered pair
A = (fA1; : : :g; Rg, where the �rst component is a multiset of at least two pre-
viously de�ned actions Ai composing A and R is the rule for organizing those
actions.
There are two categories of rules: chain rules and coordination rules. In a

nonsimple action A = (fA1; : : :g; R), a chain rule R is simply a sequential exe-
cution of the actions Ai in some order, but the order of the executions does not
matter. That is, regardless of the order in which the subactions are executed,the
result of A is achieved. A coordination rule, on the other hand, requires the ex-
ecution of the actions Ai in some speci�c, non-arbitrary order, so that the order
does matter.
We now formalize these notions. Suppose �rst that A consists of �nitely

many subactions, i.e., A = (fA1; A2; : : : ; Ang; R). Given a permutation � =
(i1; i2; : : : ; in) of the numbers 1; 2; : : : n, the execution of the Ai according to �
is simply

Ai1Ai2 : : : Ain :
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In this notation, the rule R is a chain rule if the outcome of A is the same for all
n! permutations of the numbers 1; 2; : : : ; n. That is, the outcome of the order
of actions

Ai1Ai2 : : : Ain

is the same for all permutations (i1; i2; : : : ; in) of 1; 2; : : : ; n. The rule R is a
coordination rule if this is not the case; i.e., if there exists at least one permu-
tation � = (j1; j2; : : : ; jn) of the numbers 1; 2; : : : ; n so that the execution of the
actions Ai according to � , i.e.,

Aj1Aj2 : : : Ajn ;

is not the the same as the outcome of the action A. Hence, the the outcome
of Ai is given by at least one, but not all, permutations of the Ai. We extend
similarly to the cases where A consists of in�nitely many actions.
We summarize these de�nitions as the �rst three action axioms; we will re�ne

them in the following section.

(A1) There exists a simple action ~A.

(A2) Every action A is either simple (so A = ~A) or composed of at least two pre-
viously de�ned actions fA1; : : :g and a rule R for organizing those actions
(so A = (fA1; : : :g; R)).

(A3) Each rule is either a chain or a coordination.

To motivate the de�nition of hierarchical complexity in the next section, we
will rely on the following example.

Example 1. Let + and � denote the traditional addition and multiplication
on the real numbers, and let � and 
 denote the traditional addition and
multiplication of variables (having values, say, in the real numbers). Then,
consider the following four actions.

(a) A = (f+;�g; RA) consisting of 1 + 2 (i.e., adding the numbers 1 and 2)
followed by 3 � 4 (i.e., multiplying the numbers 3 and 4). Clearly, the
order in which the two subactions are executed does not matter: adding 1
and 2 and then multiplying 3 and 4 yields the same results, namely 3 and
12, as multiplying 3 and 4 and then adding 1 and 2. Thus, A is a chain
action.

(b) B = (f+;
g; RB) consisting of 1 + 2 followed by x
 y. Again, the order
in which the two subactions are executed does not matter: adding 1 and
2 and then multiplying x and y yields the same results, namely 3 and xy,
as multiplying x and y and then adding 1 and 2. Thus, B is also a chain
action.
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(c) C = (f+;�g; RC) consisting of the expression 2 � (3 + 4). This is not a
chain, for the order of the subactions matters: if we multiply 2 and 3 �rst
and then add 4, we get 10, not 14, which is the answer dictated by rule
RC (i.e., adding 3 and 4 �rst and multiplying the result by 2). Thus C is
a coordination, not a chain.

(d) D = (f�;
g; RD) consisting of the expression x
(1�2). Notice that since
the expression involves real numbers and variables, we must necessarily use
� and 
 and not simply + and �. In particular, because the distributive
law dictates that

x
 (1� 2) = (x
 1)� (x
 2);

we cannot replace � by +. This observation will be important in the next
section. As in the previous case, it is clear that D is a coordination action.

(e) E = (f�;
g; RE) consisting of the expression x 
 (y � z). This is ex-
actly the same as (c) but at a more abstract level, and is, therefore, a
coordination rule.

3 Hierarchical Complexity

To each action A we wish to associate a notion of that action�s hierarchical
complexity, h(A). Since actions are de�ned inductively, so is the function h,
known as the order of the hierarchical complexity. For a simple action A, we
set h(A) = 0. For a non-simple action, A = (fA1; : : :g; R), we have to consider
several cases. To get an intuitive idea, we analyze the complexity of the actions
in Example 1.

Example 1 (Continued). Let m be the hierarchical complexity of + and �,
the traditional addition and multiplication on the real numbers, and let n be
the hierarchical complexity of the operations � and 
, the traditional addition
and multiplication of variables. Intuitively we understand that m < n.

(a) Since action A is a chain, with the order in which the subactions are
executed irrelevant, executing A does not require any skill beyond the
execution of each of the subactions individually. Consequently, we expect
h(A) = max(h(+); h(�)) = m.

(b) Similarly, B is a chain rule, but executing B requires being able to multiply
at the abstract level (which is more complex than adding at the primary
level), and so h(B) = max((h(+); h(
)) = h(
) = n. Notice that unlike
action A, action B consists of subactions of di¤erent complexities.

(c) Observe now that action C coordinates two subactions of the same order,
namely m. Since the order in which the two subactions are executed is
nonarbitrary, the hierarchical complexity of this action is higher than the
complexity of its subactions: h(C) > max(h(+); h(�)) = m.
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(d) As we remarked in Example 1, it may seem at �rst that action D coor-
dinates two actions of di¤erent orders, + of lower order and 
 of higher
order. However, due to the distributive law, it actually coordinates two
actions of the same order, i.e., n. In particular, we observe that a coordi-
nating action, at least in arithmetic, necessarily coordinates subactions of
equal order. As in the previous case, we see that h(D) > max(h(�); h(
)) =
n.

(e) Lastly, as in (c), it is clear that h(E) > max(h(�); h(
)) = n.

This analysis illustrates that the only way to raise hierarchical complexity
is by coordinating actions of lower complexity. Moreover, from part (d) of
Example 1, we obtain the fundamental condition that coordination requires the
subactions to be of the same order. In light of Example 1, we now state the
hierarchical complexity axioms which incorporate the action axioms (A1)-(A3).
As before we denote the complexity of an action A by h(A).

Hierarchical Complexity Axioms

(HC1) There exists a simple action ~A, and h( ~A) = 0.

(HC2) Every nonsimple action A = (fA1; : : :g; R) is either a chain of at least two
previously de�ned actions of arbitrary orders of hierarchical complexity or
a coordination of at least two previously de�ned actions all of which have
the same order of hierarchical complexity.

(HC3) For a nonsimple action A = (fA1; : : :g; R), h(A) = maxi h(Ai) if A is a
chain, and h(A) = h(A1) + 1 if A is a coordination.

Notice that by Axiom (HC2), a coordination action A = (fA1; : : :g; R) nec-
essarily coordinates subactions of equal orders of hierarchical complexity (i.e.,
h(A1) = h(A2) = : : :), and so the order of hierarchical complexity of A is one
higher than the order of hierarchical complexity of all its subactions. (In partic-
ular, in the last equation in Axiom (HC3) we may replace A1 by any subaction
of A and still obtain the same result.)
As a consequence of these axioms, we see that if we letA denote the collection

of all actions in a given system, then the hierarchical complexity is a function
h : A ! N, where N = f0; 1; : : :g is the set of natural numbers (and zero) under
the usual ordering. From the properties of the natural numbers, we immediately
obtain the following four essential properties of hierarchical complexity.

Consequences of Hierarchical Complexity Axioms

(HC4) (Discreteness) The order of hierarchical complexity of any action is a non-
negative integer. In particular, there are gaps between orders.

(HC5) (Equal Spacing) The orders of hierarchical complexity are equally spaced,
i.e., all gaps between orders are of size one.
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(HC6) (Existence) If there exists an action of order n and an action of order n+2,
then there necessarily exists an action of order n+ 1.

(HC7) (Comparison) For any two actions A and B, exactly one of the following
holds: h(A) > h(B), h(A) = h(B), h(A) < h(B). That is, the orders of
hierarchical complexity of any two actions can be compared.

(HC8) (Transitivity) For any three actions A;B, and C, if h(A) > h(B) and
h(B) > h(C), then h(A) > h(C).

In light of Table 1 that describes the orders of hierarchical complexity for,
among others, arithmetic tasks, we can assign the exact natural numbers corre-
sponding to the orders of tasks in Example 1.

Example 1 (Continued). According to Table 1, both + and � have order 7,
i.e., primary, while � and 
 have order 9, i.e., abstract.

(a) Since A is a chain, h(A) = max(h(+); h(�)) = 7, i.e., also primary.

(b) Since B is a chain, h(B) = max((h(+); h(
)) = 9, i.e., also abstract.

(c) Since C is a coordination, h(C) = max(h(+); h(�))+1 = 8, i.e., concrete.

(d) Since D is a coordination, h(D) = max(h(�); h(
)) = 10, i.e., formal.

(e) Again, since E is a coordination, h(E) = max(h(�); h(
)) + 1 = 10, i.e.,
formal.

4 Stages

The notion of stages is fundamental in the description of human, organismic,
and machine evolution. Previously it has been de�ned in some ad hoc ways;
here we describe it formally in terms of the model of hierarchical complexity.
Given a collection of actions A and a participant S performing A, the stage
of performance of S on A is the highest order of the actions in A completed
successfully, i.e., it is

stage(S;A) = maxfh(A) j A 2 A and A completed successfully by Sg:

Thus, the hierarchical complexity axioms (HC4) - (HC6) immediately imply the
following three properties of stages:

Properties of Stages:

(S1) (Discreteness) The stage of performance is a nonnegative integer. In par-
ticular, stages are discontinuous with gaps.
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(S2) (Equal Spacing) Stages are equally spaced, i.e., all gaps between are of
size one.

(S3) (Existence) Skipping stages is impossible.

This is in agreement with previous de�nitions (Commons, Trudeau, et al,
1998; Commons & Miller, 2001.). We will return to the notion of stage in the
experimental results in Sections 6 and 7. Table 2 lists the stages described by
the model of hierarchical complexity.

5 Measure of Hierarchical Complexity

We de�ne the measure of complexity at order n, denoted by 'n, as the minimum
number of simple actions required to complete an action of order n. By axioms
(HC2) and (HC3), an action of order n organizes at least two actions of order
n� 1, each of which in turn organizes at least two actions of order n� 2, and so
forth, until we reach the lowest-order, simple actions. Consequently, given the
inductive de�nition of the hierarchical complexity orders, it is not surprising
that 'n = 2n. Formally, a zero-order action, consists of at least one simple
action, so '0 = 1 = 20. For the inductive case, suppose 'n�1 = 2n�1. Since
by axioms (HC2) and (HC3), an action of order n is either a coordination of at
least two actions of order n � 1 or a chain which includes an action of order n
(and hence eventually is composed of at least two actions of order n � 1), we
have 'n = 2'n�1 = 2

n, by induction.

6 Rasch and Saltus Models and Hierarchical Com-
plexity

The hierarchical complexity model makes four predictions that should be evi-
dent in real world data. First, in interviews that probe for stage of performance,
the scoring of the stage derived from the model of hierarchical complexity should
provide the clearest and most reliable account among all scoring systems. Sec-
ond, the empirically scaled orders of complexity of tasks should match the an-
alytically predicted sequence of orders of complexity of these tasks. Third, the
empirically scaled orders of complexity of tasks of the same type and content
should be related by a simple unidimensional linear transformation. Fourth,
the empirically scaled orders of tasks should produce gaps due to the natural
number scale of hierarchical complexity. The �rst prediction has been veri�ed
in (Dawson, 2002), and so we focus on the last three.
We use Rasch analysis (Rasch, 1966; Rasch, 1980) and the related Saltus

analysis to test these predictions. (The relationship between the Rasch model
and conjoint measurement is discussed in Brogden, 1977; Fischer, 1968; Keats,
1967; and Keats, 1971; for more on the Rasch model as an application of conjoint
measurement to empirical data, see Young, 1972; Luce & Tukey, 1964; and
Perline, Wright, and Wainer, 1979.) Suppose we have a collection of tasks with
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hierarchical orders of complexity dj (1 � j � J) and a collection of participants
with proclivities to answer correctly bi (1 � i � I); the parameters dj and bi are
determined analytically. The Rasch model predicts that participant i completes
task j correctly with probability

P (Xij = 1) =
exp(bi � dj)

1 + exp(bi � dj)
:

Evidently, the probability that participant i fails to complete task j correctly is

P (Xij = 0) = 1� P (Xij = 1) =
1

1 + exp(bi � dj)
:

The Rasch model assumes that (1) the performances are drawn from a single
population with a common set of pro�ciencies and (2) the pro�ciencies of the
participants and the orders of the tasks are distributed continuously on a sin-
gle scale. Clearly, the second assumption is violated by the natural number
nature of the hierarchical complexity model, for it predicts gaps both in par-
ticipant pro�ciencies and task orders. Moreover, the participant data violates
the �rst assumption. Nevertheless, Rasch analysis can be used to obtain useful
evidence in support of hierarchical complexity; we expect the Rasch model to
produce gaps in measured task orders; that is, we should �nd clusters of tasks
of the same hierarchical complexity and a few scaled tasks between them. Still,
we should investigate how Rasch analysis can mislead us and, how signi�cant
quantitatively the violation of the continuity assumption is?
To address these issues of discontinuity, Saltus analysis was developed (Wil-

son, 1984; Wilson, 1989). Here, in addition to the parameters bi and dj , further
parameters are introduced. Each participant is mapped to one or more of H
participant groups, and each task is mapped into exactly one of K task classes.
These groups correspond to di¤erent levels of pro�ciency and orders of com-
plexity. This therefore yields additional parameters: the binary parameter �ih
indicating whether person i belongs to group h and a continuous parameter �hk
indicating the relationship between participant group h and task class k. The
parameters �ih and �hk are unobserved and must be determined from the data.
The Saltus model then predicts that participant i completes task j correctly,
with task j belonging to class k, with probability

P (Xij = 1) =
exp(bi � dj +

PH
h=1 �ih�hk)

1 + exp(bi � dj +
PH

h=1 �ih�hk)
:

As in the Rasch analysis, the probability that participant i fails to complete
task j correctly is

P (Xij = 0) = 1� P (Xij = 1) =
1

1 + exp(bi � dj +
PH

h=1 �ih�hk)
:

Observe that if there is exactly one group of participants (H = 1) and one class
of tasks (K = 1), then the Saltus model is exactly the same as the Rasch model.
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Thus the Saltus model may be thought of as an aggregate of Rasch models for
each group and class.
The parameters in the Saltus model provide a means of measuring the signif-

icance of the gaps. We use it here to investigate whether the expected response
patterns occur with enough regularity to support the claim that there should be
jump discontinuities between successive stage of hierarchical integration. Thus
we take K to be the number of orders of hierarchical complexity of tasks to
be studied; within each class of tasks of the same hierarchical complexity we
assume that the Rasch model holds. This means that the tasks are measured
unidimensionally within each class, but the classes di¤er in their order of com-
plexity. Consequently, a di¤erent latent dimension of ability is being measured
in each class.
There are several ways of determining H, K, and the parameters �ih and

�hk. The �rst would be to �t the mixed Rasch models with di¤erent numbers
of classes and to choose the best-�tting one (e.g., with the Akaike Informa-
tion Criterion (AIC), the Best Information Criterion (BIC), or the Consistent
Akaike Information Criterion (CAIC)). These criteria relate the likelihood of a
model to the number of parameters in the model, preferring models with fewer
parameters. Another way is to assign participants to latent classes not deter-
ministically but with varying probabilities; the higher the mean probability, the
more unequivocal the assignment of a participant to a given group. (For more
details, see Mislevy and Wilson, 1996 and Rost, 2001.)
We should note that pro�ciencies in real-life experiments depend on more

than just the hierarchical complexity of the tasks; for example, familiarity, hori-
zontal complexity, context, and bias also play a role. For example, a participant
may report that a lower-stage task in an unfamiliar domain is harder than
a higher-stage task in a familiar domain. Also, when explanations of perfor-
mance are part of the action performed, the minimal set of actions may include
remembering the actions, as well as naming and re�ecting upon the actions
(King, Kitchener, Wood & Davison, 1989; Kitchener & King, 1990; Tappan,
1990); these additional non-stage requirements make an action more di¢ cult
(resulting, e.g., in a higher age at which a participant completes the tasks suc-
cessfully), but do not raise the hierarchical complexity of the action. In the
studies reported here, we control for some of these variables, such as support:
providing support by giving examples, giving practice of more extensive train-
ing, or removing support by requiring participants to discover the problems, the
questions, and the phenomena themselves.

7 Rasch and Saltus Analysis of Two Di¤erent
Tasks

We analyzed the data for two experiments: the Balanced Beam Series and the
Causality (Laundry) Series. The Balanced Beam Series (adapted from Inhelder
& Piaget, 1958 and Commons, Goodheart, & Bresette, 1995), consists of sets
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of balance beam tasks in increasing order of hierarchical complexity. In each
case, a beam is described as a fulcrum for which di¤erent size weights may be
attached at di¤erent distances on each side. Participant responses were assessed
using multiple choice answers.
The Laundry (Causality) Series (Commons, Miller, & Kuhn, 1982) is based

on an isolation of variables problem called the pendulum problem (Inhelder &
Piaget, 1958). The problems presented the participants with a di¤erent kind
of a stain on a cloth and many di¤erent ingredients that were described as
either removing the stain or not removing the stain. The task consisted of
predicting which combination of ingredients would remove the stain. Although
each con�guration of variables was repeated once, this was not apparent until
the problem had been solved.
Both exercises consisted of tasks at the concrete, abstract, formal, and sys-

tematic orders of complexity (i.e., orders 8, 9, 10, and 11), and participants
included 5th and 6th graders and adults. Both problems were paper and pencil
exercises. The tasks form a series because every higher order task has the lower
order task embedded in it. For each of the tasks Quest software (Adams &
Khoo, 1993) generated a separate Rasch model.
The Balance Beam Series results support our prediction from the model

of hierarchical complexity that the Balanced Beam Series may be viewed as a
measurement in a single dimension of performance even if additional parameters
might improve the �t. The tasks that were posited to be less complex were
indeed easier for the participants (Commons et al, 1997). The tight linear
relationship between di¢ culty and hierarchical complexity was observed, thus
supporting the second and third predictions of the model. The logarithm of the
scaled item di¢ culty (called threshold by Rasch analysts) is graphed against
the order of hierarchical complexity in Figure 1. Recall from Section 5 that
the measure of hierarchical complexity order n is 2n, so we should expect a
linear plot in Figure 1; indeed, this is observed. The regression equation with
16 participants yields excellent agreement: the correlation coe¢ cient is r(16) =
0:9244 (r2 = 0:8545); the F -value is F (1; 16) = 93:96; and the p-value is p <
0:00005.
As the model of hierarchical complexity predicts, the items form a series of

clusters along the dimension corresponding to their order of hierarchical com-
plexity. The order of hierarchical complexity, which re�ects the order in which
items are learned, predicted the item di¢ culty correctly with notable exception
at the formal and systematic levels.
A Saltus analysis was used to address the third prediction, whether the

natural number of hierarchical complexity did produce gaps in task di¢ culty.
In the balance beam study, a two-level Saltus model was used to examine the
gap between the compact/abstract and formal/systematic classes of tasks. The
two-level model was a better predictor of performance than the simple Rasch
analysis, supporting the existence of gaps: �2(4) = 71:91 and p < 0:01.
The results from the Laundry (Causality) Series were very similar (Good-

heart & Dawson, 1996; Goodheart et al, 1997), providing additional support for
the notion that task di¢ culty is measured along a single dimension. The regres-
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sion equation for di¢ culty versus hierarchical complexity also yields excellent
agreement with correlation coe¢ cient r(16) = 0:918 (r2 = 0:843); the F -value
is F (1; 22) = 118:42; and the p-value is p < 0:00005. The regression plot may
be seen in Figure 2.

8 Conclusions

In this paper we have presented a formal model of hierarchical complexity that
leads to a quantal notion of stage. The key feature of the model is that the
orders of hierarchical complexity of actions correspond to the natural numbers.
As a result, we obtain the following predictions for stages:

1. Sequentiality of stages is perfect; skipping stages is not possible. This has
been shown here and elsewhere (Dawson, Commons, Wilson, in prepara-
tion).

2. Because orders of hierarchical complexity are equally spaced, groups of
tasks at di¤erent orders of complexity should cluster in well-de�ned and
equally spaced groups. This was observed using Rasch analysis here and
elsewhere (Dawson, Commons, Wilson, in preparation).

3. Because task orders have gaps, there exist no intermediate stages of per-
formances, i.e., stages are discontinuous. This was shown by a Saltus
model.

4. Participants generally perform in a consistent manner across tasks of the
same complexity. Most performances are predominantly at their most
frequent stage of performances.

The model of hierarchical complexity sets forth the core requirements for a
theory of stages; many researchers posit more core requirements (e.g., Fischer,
1980), but none require fewer. Any model that fails to account for the hierarchi-
cal complexity of tasks in the de�nition of stage will by de�nition fail to yield
results that are accurate or even signi�cant as to the order of developmental
complexity.
The establishment of an analytic measure of hierarchical complexity has

many bene�ts for cognitive science, psychology and evolutionary studies. First,
by classifying task complexity analytically, such a model produces measures that
are independent of observation and of actual organism or machine performance,
thus leading to a greater degree of accuracy and consistency in stage measure-
ment. Second, the model de�nes a single sequence underlying all domains of
development whether intragenerational (as in animal or human development)
or intergenerational (as in neural networks) (e.g., Kohlberg & Armon, 1984).
The model of hierarchical complexity answers some of the most fundamen-

tal questions about complexity. By theoretically presenting a method for the
analysis of tasks and deriving an actual task chain, the model demonstrates that
such chains exist. By removing the notion of domain, i.e., the general area to
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which a task belongs, from the measurement of the hierarchy of tasks, the model
shows that the sequences of orders and stages are invariable across all domains;
in particular, task complexity remains unchanged regardless of how broadly or
narrowly domains are de�ned. We caution, however, that an action�s di¢ culty
is related to but di¤erent from its complexity; while di¢ culty depends on the
domain and other non-stage properties of the task, complexity does not.
Finally, using formal axioms, we obtain an analytic model of stage develop-

ment, which formalizes key notions stated implicitly in most stage theories and
predicts that stages exist as more than ad hoc descriptions of sequential changes
in human actions. As such it o¤ers clarity and consistency to the �eld of stage
theory and to the study of development and evolution in general.

Authors�Note

During a conversation among R. Duncan Luce, the �rst author, and the �rst
author�s son Lucas Commons-Miller, there was a discussion of why nonarbi-
trary organization of actions was at the heart of hierarchical complexity, and
therefore stage theory and distributivity. Some curious issues of distributivity
are addressed by Luce (2004). Our paper grows out of that discussion with the
authors taking the blame for its faults and Luce and Lucas taking the credit for
the inspiration, if not its strengths. Also Luce read many drafts of this paper
and tried to correct many of its weaknesses.

Portions of this paper appear in Commons, Trudeau, et. al (1998),
Commons and Miller (1998),. Minimal parts of this paper were based upon
material from LaLlave and Commons (1996). They are reproduced here with
permission of the respective authors and publishers. Some parts of this paper
were presented at the Society for Research in Child Development, April 1987,
the Third Beyond Formal Operations Symposium held at Harvard: Positive
Development During Adolescence and Adulthood, June, 1987, and the 17th
Annual Convention for the Association of Behavior Analysis, May, 1991. c
2001,
Dare Association, Inc., Cambridge.

Address reprint requests to Michael Lamport Commons, Department of
Psychiatry, Harvard Medical School, Massachusetts Mental Health Center, 234
Huron Avenue, Cambridge, MA 02138. Commons@tiac.net.
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Tables

Order Name Example

0 Calculatory Simple machine arithmetic on bits
1 Sensory and mo-

tor
Seeing circles, squares, etc. or touching them

2 Circular sensory-
motor

Reaching and grasping a circle or a square

3 Sensory-motor A class of circles or squares can be made
4 Nominal A class of circles or squares can be named

"Circles" or "Squares"
5 Sentential The numbers 1, 2, 3, 4, 5 may be said in order
6 Preoperational The numbers 1, 2, 3, 4, 5 may be counted and

named (i.e., 5 is named "Five" or "Cinco")
7 Primary Simple arithmetic operations:

1 + 3 = 4 and 5� 4 = 20

8 Concrete Tasks involving order of simple arithmetic ac-
tions, including distributivity:

5� (1 + 3) = (5� 1) + (5� 3) = 5 + 15 = 20

9 Abstract All the forms of the number 5 are equivalent
to the same variables value x = 5; forming a
class based on an abstract feature

10 Formal The general left-hand distributive law:

x
 (y � z) = (x
 y)� (x
 z)

11 Systematic The left-hand distributive law with addition
and multiplication interchanged is not true

12 Metasystematic Distributivity in propositional logic and ele-
mentary set theory are isomporhic:

x ^ (y _ z) = (x ^ y) _ (x ^ z)
A \ (B [ C) = (A \B) [ (AcapC)

13 Paradigmatic General distributive systems present in vari-
ous areas of mathematics, including set the-
ory, logic, algebra, probability theory, etc.

14 Crossparadigmatic Integration of mathematics and other �elds,
such as physics (e.g., quantum mechanics, the
standard model of elementary particles, spe-
cial and general relativity)

Table 1. A sequence of actions at di¤erent orders of hierarchical complexity
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Order What They Do How They Do It Example

0 Exact �no generalization Human-made program
manipulates bits

None

1 Discrimination in a rote
fashion, stimuli, general-
ization, move

Move limbs, lips, eyes,
head, view objects and
movement

Discriminative and con-
ditioned stimuli

2 Form open-ended classes Reach, touch, grab,
shake objects, babble

Open-ended classes,
phonemes

3 Form concepts Respond to stimuli in a
class successfully

Morphemes, concepts

4 Find relations among
concepts, use names

Use names and other
words as successful com-
mands

Single words: ejacula-
tives and exclamations,
verbs, nouns, number
names, letter names

5 Imitate and acquire se-
quences, follow short se-
quential acts

Generalize match-
dependent task actions;
chain words

Pronouns: my, mine, I;
yours, you; we, ours

6 Make simple deductions,
follow lists of short se-
quential acts, tell stories

Count random events
and objects; combine
numbers and simple
propositions

Connectives: as, when,
then, why, before; prod-
ucts of simple operations

7 Simple logical deduction
and empirical rules in-
volving time sequence,
simple arithmetic

Add, subtract, multiply
divide, count, prove, ex-
ecute series of tasks on
own

Times, places,actors,
arithmetic outcomes
from calculations

8 Carry out full arithmetic
form cliques, plan deals

Execute long division,
follow complex social
rules, coordinate per-
spective of oneself and
others

Interrelations, social
events, reasonable deals

9 Discriminate variables
such as stereotypes,
logical quali�cations
(none, some, all)

Form variables out of �-
nite classes; make and
quantify propositions

Variable time, place, act,
actor, state, type; quan-
ti�ers; categorical asser-
tions (e.g., "We all die")

10 Argue using empirical or
logical evidence, logic is
linear

Solve problems with one
unknown using algebra,
logic, and empiricism

Relatioships are formed
out of variables; words:
linear, logical; if-then,
thus, therefore, because;
correct scienti�c solu-
tions

11 Construct multivariate
systems and matrices

Coordinate more than
one variable as input;
consider relationships in
contexts

Events and concepts in
multivariate contexts;
systems consisting of
relations: legal, societal,
economic
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Order What They Do How They Do It Example

12 Construct multisystems
and metasystems out of
disparate systems

Create supersystems out
of systems; compare sys-
tems and perspectives;
name properties of sys-
tems: isomoprhic, home-
omorphic, complete, con-
sistent

Supersystems and meta-
systems are formed out
of systems of relation-
ships

13 Fit metaystems together
to form new paradigms

Synthesize metaystems Paradigms are formed
out of multiple metasys-
tems

14 Fit paradigms together
to form new �elds

Form new �elds by cross-
ing paradigms

New �elds are formed
out of multiple para-
digms

Table 2. Stages described by the model of hierarchical complexity

Figures

Figure 1. Threshold vs. task order for the Balanced Beam Series
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Figure 2. Threshold vs. task order for the Laundry (Causality) Series
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